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Abstract

This thesis introduces a model for epidemics on networks based on the classical Polya

process. Temporal contagion processes are generated on the network nodes using

a modified Polya sampling scheme that accounts for spatial infection among neigh-

bouring nodes. The stochastic properties and asymptotic behaviour of the resulting

network Polya contagion process are analyzed. Given the complicated nature of this

process, three classical Polya processes, one computational and two analytical, are

proposed to statistically approximate the contagion process of each node, demon-

strating a good fit for a range of system parameters. An optimal control problem

is formulated for minimizing the average infection using a limited curing budget,

and a number of different curing strategies are presented, including a proven conver-

gent gradient descent algorithm. The feasibility of the problem is proven under high

curing budgets by deriving conservative lower bounds that turn some processes into

supermartingales. Extensive simulations run on large-scale networks demonstrate the

effectiveness of our proposed strategies.
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Chapter 1

Introduction

In this work, we examine the dynamics and properties of a contagion process, or

epidemic, on a network. Here an epidemic can represent a disease [31], a computer

virus [22], the spread of an innovation, rumour or idea [44], or the dynamics of

competing opinions in a social network [1].

Epidemics on networks have been intensively studied in recent years; see [33, 34,

30] and references therein and thereafter. Many different models for the study of

infection propagation and curing exist in the literature. Our model is similar to the

well-known susceptible-infected-susceptible (SIS) compartmental infection model [18],

in the sense that initially, all nodes may be healthy or infected and as the epidemic

spreads, nodes that are infected can be cured to become healthy, but any healthy

node may become infected at any time, regardless of whether they have been cured

previously. This compartmental relationship is illustrated in Figure 1.1. However, the

dynamics of the traditional SIS model tend to be complicated, and often deterministic

approximation methods are employed to simplify the analysis [34].

In contrast to the traditional SIS model, our model is motivated by the classical

Polya contagion process, which evolves by sampling from an urn containing a finite
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Susceptible Infected

S I

Figure 1.1: Susceptible-infected-susceptible compartmental model.

number of red and black balls [19, 39, 38]. The classical Polya model has been used

and naturally arises in a wide range of applications, such as consensus dynamics [20]

and population genetics [27]; see [37] for a summary. In the network Polya contagion

model, each node of the underlying network is equipped with an individual urn;

however, instead of sampling from these urns when generating its contagion process,

each node has a “super urn”, created by combining the contents of its own urn

with those of its neighbours’ urns. This adaptation captures the concept of spatial

infection, since having infected neighbours increases the chance that an individual

is infected in the future. This concept of the super urn sampling mechanism for

incorporating spatial interactions was originally introduced in [11] in the context

of the image segmentation and labeling problem. In this work, we investigate the

dynamics and control of the resulting contagion process affecting each node of the

network.

More specifically, we study the time evolution and stochastic properties of the

proposed network contagion process. We derive an expression for the temporal n-fold

joint probability distribution of the process. We show that this process, unlike the

classical Polya urn process, is in general non-stationary, and hence not exchangeable.

For the special case of complete networks, we analytically find the 1-dimensional and

2-dimensional (n, 1)-step marginal distributions of the contagion process. These re-

sults show that, even though it is not stationary, the process is nevertheless identically
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distributed with its latter two marginal distributions being invariant to time shifts.

The process with finite memory is investigated, showing that the entire state is Marko-

vian and the individual processes are quasi-Markovian in the entire state. We also

establish several martingale properties regarding the network urn compositions, prov-

ing that the proportions of red balls in each node’s urn as well as the network average

urn proportion converge almost surely to a limit as time grows without bound. We

next provide three approximations to the network contagion process by modelling

each node’s contagion process via a classical stationary Polya process [38]. In the

first one, we approximate each node’s process with the classical Polya process whose

correlation parameter is empirically selected so that the Kullback-Leibler divergence

measure between its n-fold joint distribution and that of the original node process

is minimized. In the second approximation, we propose an analytical model whose

parameters are chosen by matching its first and (n, 1)-step second-order statistics

with those of the original node process, which fits well for large networks. The last

approximation uses a classical Polya model with parameters chosen analytically that

we show fits well for small networks. Simulation results are presented to support the

validity of these approximations.

We further propose various natural ways to measure the total infection in the

network Polya contagion model, and examine conditions under which these measures

admit limits. Using these measures, we pose an optimal control problem within the

context of the network Polya contagion model. We characterize bounds on the allo-

cation of curing to individual nodes which turn the network Polya contagion process

infection measures into supermartingales. Our result hence provides a conservative

strategy for curing network epidemics. We next focus on realistic scenarios, where the
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curing budget is constrained. As our next contribution, we prove that the constrained

gradient flow method is convergent for this problem and hence can be employed to

find near-optimal strategies under a fixed curing budget at each time step. In spite

of its effectiveness, as we demonstrate, the gradient flow strategy is computationally

expensive and is only implementable in a centralized manner. These shortcomings

motivate us to look into alternative strategies, which take advantage of notions of

node centrality of the underlying network along with the composition of super urns

at each time step. These strategies are less expensive computationally and can be

adopted for implementation in a decentralized manner. Through extensive simula-

tion results, we show that our proposed heuristic strategies perform well in curing

epidemics.

The remainder of this thesis is organized as follows. Chapter 2 describes the

network Polya contagion process, including its stochastic properties, some theoret-

ical results giving conditions under which some processes become martingales, and

approximations that can be used to estimate the limiting behaviour. Parts of this

chapter appeared in [24] and [25]. Chapter 3 outlines the specific control problem

to be considered in curing epidemics using the model, and discusses a number of

theoretical, numerical and heuristic strategies to control the infection; minor parts of

this chapter are present in [25]. Chapter 4 describes the simulations used to observe

the performance of the model, and discusses the results in detail. Finally, Chapter 5

concludes the thesis.
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1.1 Preliminaries

Let (Ω,F , P ) be a probability space, and consider the stochastic process {Zn}∞n=1,

where each Zn is a random variable on Ω. For a sequence Zi = (Zi,1, ..., Zi,n), we use

the notation Zt
i,s with 1 ≤ s < t ≤ n to denote the vector (Zi,s, Zi,s+1, ..., Zi,t). We

often refer to the indices of the process as “time” indices. Our technical results rely

on notions from probability theory and stochastic processes, some of which we recall

here. Precise definitions of all concepts, including that of ergodicity, can be found in

standard texts (e.g., [8, 23]).

Definition. (Filtration): The sequence of σ-algebras {Fn}∞n=1 is a filtration on the

process {Zn}∞n=1 if

• Fn ⊆ F for all n,

• t ≤ n⇒ Ft ⊆ Fn, and

• Zn is measurable with respect to Fn for all n.

Herein we will consider a special kind of filtration on {Zn}∞n=1, called the natu-

ral filtration {FZ
n }

∞
n=1, which informally is the “smallest” filtration on the process

{Zn}∞n=1, i.e., {F
Z
n }

∞
n=1 ⊆ {Fn}∞n=1 for any other filtration on {Zn}∞n=1.

Definition. (Stationary): The process {Zn}∞n=1 is stationary if its joint probability

distribution is invariant to time shifts, i.e.,

P (Z1 = a1, . . . , Zn = an) = P (Z1+s = a1, . . . , Zn+s = an)

for all n, s ∈ Z≥1.
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Definition. (Exchangeable): The process {Zn}∞n=1 is exchangeable if its joint prob-

ability distribution is invariant to permutations in the time index, i.e.,

P (Z1+s = a1, . . . , Zn+s = an) = P (Zi1 = a1, . . . , Zin = an)

for all n, s ∈ Z≥1 and every permutation {i1, . . . , in} of {1 + s, . . . , n+ s}.

It directly follows from the definitions that an exchangeable process is stationary.

We now describe a special kind of process, called a martingale.

Definition. (Martingale): The process {Zn}∞n=1 is called a martingale (resp. sub-

martingale, supermartingale) with respect to the process {Yn}∞n=1 if

1. E[|Zn|] <∞, and

2. for any n ∈ Z≥1, we have

E[Zn+1|Yn] = Zn,

resp. E[Zn+1|Yn] ≥ Zn,

resp. E[Zn+1|Yn] ≤ Zn, almost surely.

If the inequalities in the above definition are made to be strict, we would call the

resulting process a strict submartingale or strict supermartingale. We now recall the

martingale convergence theorem, which states that any martingale (or submartingale,

or supermartingale) converges almost surely to a random variable.

Theorem 1.1.1. (Submartingale Convergence Theorem [8, Thm 6.4.3]): Let

{Zn}
∞
n=1 be a submartingale. If

sup
1≤n≤∞

E[Zn] <∞

then there is some random variable Z∞ such that Zn → Z∞ almost surely.
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. . .

Figure 1.2: Illustration of the generation of a Barabasi-Albert network. We start with
a 2-node complete network and add 6 nodes each with 1 edge.

Corollary 1.1.2. (Supermartingale Convergence Theorem [8, Cor 6.4.4]):

Let {Zn}∞n=1 be a supermartingale. If

inf
1≤n≤∞

E[Zn] > −∞

then there is some random variable Z∞ such that Zn → Z∞ almost surely.

Note that in particular a martingale is a submartingale, and hence Theorem 1.1.1

gives conditions for martingales to converge as well.

Two other types of closely-related processes we will consider are Markovian and

quasi-Markovian processes.

Definition. (Markov process with memory M): A process {Zn}∞n=1 is Marko-

vian with memory M if it satisfies the Markov property:

P
(

Zn = an | {Zt = at}
n−1
t=1

)

= P
(

Zn = an | {Zt = at}
n−1
t=n−M

)

for all n > M.

In other words, {Zn}∞n=1 depends (conditionally) only on the last M steps.

Definition. (Quasi-Markovian): An individual process {Zi,n}∞n=1 from a process

{Zn}∞n=1, where Zn = (Z1, . . . , Zi, . . . , ZN), is quasi-Markovian with memory M if it

depends (conditionally) only on the last M steps for the whole process {Zn}∞n=1:

P
(

Zi,n = ai,n | {Zt = at}
n−1
t=1

)

= P
(

Zi,n = ai,n | {Zt = at}
n−1
t=n−M

)

for all n > M.
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Throughout this work, we will commonly refer to Barabasi-Albert networks [4].

These networks have a random structure that has been shown to resemble the topol-

ogy of real-world social networks. The underlying graphs are randomly generated

sequentially through preferential attachment. An initial complete network is created,

and then nodes are added one after the other, each with a fixed number of edges.

The new nodes choose existing nodes to connect with at random, but preferentially

in the sense that the probability of connecting to an existing node is proportional to

its degree deg(·). If there are k existing nodes in the network, the probability that

the new node will make an edge to node i ∈ {1, . . . , k} is deg(i)
∑k

j=1
deg(j)

. In this work, we

always start with a 2-node complete network, and our added nodes always create 1

edge. An example of this procedure is shown in Figure 1.2.

1.2 Classical Polya Process

We now recall the classical version of the Polya contagion process [19, 38]. The

classical Polya process has been applied in many different contexts, including the

modelling of communication channels with memory [3], image segmentation [11], as

well as in biology, statistics and other areas (see [37]). Consider an urn with R ∈ Z>0

red balls and B ∈ Z>0 black balls. We denote the total number of balls by T , i.e.,

T = R+B. At each time step, a ball is drawn from the urn. The ball is then returned

along with ∆ > 0 balls of the same colour. We use an indicator Zn to denote the

colour of ball in the nth draw:

Zn =















1 if the nth draw is red

0 if the nth draw is black.
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R red

B black

T = R+B

R red

B +∆ black

T = R+B +∆

Z1 = 0

Figure 1.3: Illustration of the first draw for a classical Polya process. We drew a
black ball and hence Z1 = 0. Here R = 2, B = 2, and ∆ = 2.

Let Un denote the proportion of red balls in the urn after the nth draw. Then

Un :=
R +∆

∑n
t=1 Zt

T + n∆
=

ρc + δc
∑n

t=1 Zt

1 + nδc
,

where ρc =
R
T
is the initial proportion of red balls in the urn and δc =

∆
T
is a correlation

parameter. We call δc a correlation parameter since the correlation coefficient between

any two different draws is constant and of the form

Cor(Zt1 , Zt2) =
δc

1 + δc
for all t1 6= t2 ∈ Z≥1.

Since we draw balls from this urn at each time step, the conditional probability of

drawing a red ball at time n, given Zn−1 = (Z1, · · · , Zn−1), is given by

P (Zn = 1 | Zn−1) =
R +∆

∑n−1
t=1 Zt

T + (n− 1)∆
= Un−1.

It can be easily shown that {Un}∞n=1 is a martingale [21]. The process {Zn}∞n=1, whose

n-fold joint distribution is denoted by Q
(n)
ρc,δc

, is also exchangeable (hence stationary)

and non-ergodic with both Un and the process sample average 1
n

∑n

i=1 Zi converging

almost surely as n → ∞ to a random variable governed by the Beta distribution

with parameters ρc
δc

and 1−ρc
δc

; we denote this probability density function (pdf) by

Beta(ρc
δc
, 1−ρc

δc
) [21, 3]. Lastly, the 1-dimensional distribution of the Polya process is

Q
(1)
ρc,δc

(a) = P (Zn = a) = (ρc)
a(1 − ρc)

1−a, for all n ∈ Z≥1 and a ∈ {0, 1}. The above

classical Polya process {Zn}∞n=1 is fully described by its parameters ρc and δc, and
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thus we denote it by Polya(ρc, δc).

A number of adaptations to the classical Polya process exist in the literature. The

most common change is to alter the way that balls are drawn and added. To express

the number of balls of each colour that are added after each draw, a replacement

matrix MR is commonly used,

MR =







∆rr ∆rb

∆br ∆bb






,

where ∆rr red balls and ∆rb black balls are added to the urn when a red ball is

drawn, and similarly ∆br red and ∆bb black balls are added after black is drawn.

If ∆rr + ∆rb = ∆br + ∆bb, the process is called balanced. Most existing results in

the literature are concerned with balanced processes, as it is simpler mathematically;

nevertheless, a number of works have investigated properties and limiting behaviours

for scenarios with unbalanced urns [41], and even when the parameters are any non-

negative integers [32]. Some works consider cases where a random number of balls

are drawn, some when a random number are added [7], or both [6]. In many cases the

limiting behaviours of these altered processes are considered. In the case where multi-

ple balls are drawn, both with and without replacement, [16] studies the expectation

and variance of the number of balls of each colour in time. [28] investigates a model

with an arbitrary number of colours of balls, as well as constant factors that alter

the probabilities of selecting specific colours, and prove a functional limit theorem for

this process. Lastly, and perhaps most influentially, [36] explores the idea that the

number of balls added at each step can vary in time.

Further adaptations considered in the literature include allowing the probability of

drawing balls to be altered, as well as embeddings of the process in continuous time.
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In [26], different functions that depend on the proportion of balls in the urn are used

to calculate the probability of drawing one of the two colours. [47] further generalizes

this by allowing the functions to be nonlinear, and shows some asymptotic behaviours

of the resulting process along with applications. Some authors consider embedding

the classical Polya process in continuous time [9], and further works examine its

limiting behaviour [10]. Herein we do not consider such adaptations, since they add

a large amount of complexity to the analysis without adding a significant benefit.

Finally, one of the most important adaptations that we consider herein is the use

of more than one urn. In [15], a model with two urns that influence only one another

and not themselves is investigated. [5] presents a model with multiple urns, wherein

at each step a single urn is randomly selected and sampled from based on a convex

combination of all urn proportions. In the setting of a network, [13] gives each node

an urn with balls of one colour. Balls are added based on where edges exist: a ball

is randomly added to one of the nodes on the edge based on the proportion of balls

in its urn relative to the sum of balls in both nodes’ urns. In this way individual

interactions between nodes may affect the state of one another. However, all of

these models fail to capture the notion of spatial impact between many nodes in a

neighbourhood simultaneously. It is with this in mind that we introduce the network

Polya contagion process and examine its properties in the next chapter.
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Chapter 2

Network Polya Contagion Process

In this section, we introduce a generalization of the Polya contagion process to net-

works, where each individual node in the underlying graph that describes the network

topology is still equipped with an urn; however, the node’s neighbouring structure

affects the evolution of its process. This model hence captures spatial contagion, since

infected neighbours increase the chance of a node being infected in the future.

Consider an undirected graph G = (V, E), where V = {1, . . . , N} is the set of

N ∈ Z≥1 nodes and E ⊂ V × V is the set of edges. We assume that G is connected,

i.e., there is a path between any two nodes in G. We use Ni to denote the set of nodes

that are neighbours to node i, that is Ni = {v ∈ V : (i, v) ∈ E}, and N ′
i = {i} ∪ Ni.

If N ′
i = V for all i ∈ V , the network is called complete; if |Ni| = |Nj| for all i, j ∈ V ,

we call it regular. Each node i ∈ V is equipped with an urn, initially with Ri ∈ Z>0

red balls and Bi ∈ Z>0 black balls (we do not let Ri = 0 or Bi = 0 to avoid any

degenerate cases). We let Ti = Ri + Bi be the total number of balls in the ith urn,

i ∈ {1, · · · , N}. Thus in the case of the network Polya contagion process, the initial
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proportion of red balls for the entire network is

ρ =

∑N

i=1Ri
∑N

i=1 Ti

. (2.1)

We use Zi,n as an indicator for the ball drawn for node i at time n:

Zi,n =















1 if the nth draw for node i is red,

0 if the nth draw for node i is black.

However, instead of drawing solely from its own urn, each node simultaneously draws

from their own “super urn”, which is created by combining all the balls in its own urn

with the balls in its neighbours’ urns; see Figure 2.1. Hence the super urn of node i

initially has R̄i =
∑

j∈N ′
i
Rj red balls, B̄i =

∑

j∈N ′
i
Bj black balls, and T̄i =

∑

j∈N ′
i
Tj

balls in total. This construction allows the spatial relationships between nodes to

influence their state. This means that Zi,n is the indicator for a ball drawn from

node i’s super urn, and not its individual urn. Since these variables describe the

entire evolution of the process, we call {Zn}∞n=1 = {(Z1,n, . . . , ZN,n)}∞n=1 the history

of draws, and the natural filtration {Fn}∞n=1 is always assumed to be the natural

filtration on {Zn}∞n=1.

We further consider an unbalanced and time-varying version of the classical Polya

contagion process, following [36], where the number of balls added after a draw may

vary based on the colour that was drawn, the node i that it was drawn for, as well

as the time n at which it was drawn. Hence for an arbitrary node i, the replacement

matrix at time t is

MR,i(t) =







∆r,i(t) 0

0 ∆b,i(t)






.
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Node 1’s super urn

1

2 3

4
5 6

7

Figure 2.1: Illustration of a super urn in a network.

When ∆r,i(t) = ∆b,i(t) for all t ∈ Z≥1, we write ∆i(t) instead; if the ∆’s are not node-

dependent, we omit the node index. We assume throughout that ∆r,i(t) ≥ 0,∆b,i(t) ≥

0, for all t ∈ Z≥1 and that there exists i ∈ V and t such that ∆r,i(t) + ∆b,i(t) 6= 0;

otherwise we are simply sampling with replacement.

In the context of epidemics, the red and black balls in an urn, respectively, rep-

resent units of “infection” and “healthiness”; for example, bacteria and white blood

cells. In a super urn, the bacteria can infect others in the area and the white blood

cells contribute to the overall health in the neighbourhood of an individual.1 Drawing

red at time t means the bacteria in the neighbourhood were successful in reproduction

and so the individual was more infected, otherwise they were healthier since the white

blood cells reproduced. Thus when Zi,n = 1 we say that node i is infected at time n,

1Note that in this context the neighbourhood consists of both the individual i as well as all of
its neighbours, which above we define as N ′

i .
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and if Zi,n = 0 then it is healthy. We add more units of bacteria once they reproduce,

but commonly assume this number, ∆r,i(t), is the same across all individuals and

time because the bacteria does not evolve or become altered. The amount of white

blood cells created, ∆b,i(t), may change since we can give more medicine to certain

people to increase their immune response, or vaccinate them so they are better able

to fight the disease. However, the application of this model to biological disease is

limited by the symmetry of the actions. Traditionally, infection can be shared by

individuals through contact, but curing and medicine is limited to the individual; for

the network Polya contagion process, both infection and healthiness are shared with

all neighbours through the super urns. This symmetry and discrete units of infec-

tion and healthiness is justifiable in the context of the spread of ideas and opinions

through notions of news articles or social media posts, for computer viruses through

infected files and updates to virus definitions, or for advertising between competitors,

but requires careful consideration for biological diseases.

A practical adaptation is for urns to have “finite memory” in the sense that the

balls added after each draw are only kept in each node’s urn for a finite number M of

future draws. The results presented herein will focus on the case where the process

has infinite memory unless stated otherwise.

To express the proportion of red balls in the individual urns of the nodes, we

define the random vector Un = (U1,n, . . . , UN,n), where Ui,n is the proportion of red

balls in node i’s urn after the nth draw, i ∈ V . For node i,

Ui,n =
Ri +

∑n
t=1 Zi,t∆r,i(t)

Ti +
∑n

t=1 Zi,t∆r,i(t) + (1− Zi,t)∆b,i(t)

where the numerator represents the total number of red balls in node i’s urn after

the nth draw, while the denominator is the total number of balls in the same urn.
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Note that Ui,0 =
Ri

Ti
is the initial proportion of red balls in node i’s urn. For ease of

notation, let

Xj,n = Tj +

n
∑

t=1

Zj,t∆r,j(t) + (1− Zj,t)∆b,j(t). (2.2)

Furthermore, we define the random vector Sn = (S1,n, ..., SN,n) as the proportion

of red balls in the super urns of the nodes after the nth draw, so that Si,n is the

proportion of red balls in node i’s super urn after n draws. Hence, for node i,

Si,n =
R̄i +

∑

j∈N ′
i

∑n
t=1 Zj,t∆r,j(t)

∑

j∈N ′
i
Xj,n

=

∑

j∈N
′

i
Uj,nXj,n

∑

j∈N
′

i
Xj,n

, (2.3)

where Si,0 = R̄i

T̄i
. In fact, Si,n is a function of the random draw variables of the

network, and in particular of {Zn
j }j∈N ′

i
, but for ease of notation, when the arguments

are clear, we write Si,n(Z
n
1 , · · · , Z

n
N) = Si,n. Then the conditional probability of

drawing a red ball from the super urn of node i at time n given the complete network

history, i.e. given all the past n − 1 draw variables for each node in the network

{Zn−1
j }Nj=1 = {(Z1,1, · · · , Z1,n−1), · · · , (ZN,1, · · · , ZN,n−1)}, satisfies

P
(

Zi,n = 1|{Zn−1
j }Nj=1

)

=
R̄i +

∑

j∈N ′
i

∑n−1
t=1 Zj,t∆r,j(t)

∑

j∈N ′
i
Xj,n−1

= Si,n−1. (2.4)

That is, the conditional probability of drawing a red ball for node i at time n given

the entire past {Zn−1
j }Nj=1 is the proportion of red balls in its super urn, Si,n−1. Since

all draws occur simultaneously, this conditional probability for a specific node does

not depend on any other draws at time n, and hence the draws are conditionally

independent. This is analogous to the original Polya case, but instead of relying on

the individual proportion of red balls Un to describe the conditional probability of

drawing red balls, we use the super urn proportion of red balls since we now draw

from there.

A main objective throughout the rest of this thesis is to study the evolution and
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stochastic properties of the process. Using the above conditional probability, we can

determine the n-fold joint probability of the entire network G: for ani ∈ {0, 1}
n,

i ∈ {1, ..., N}, we have that

P
(n)
G (an1 , · · · , a

n
N) := P

(

{Zn
i = ani }

N
i=1

)

=
n
∏

t=1

P
(

{Zi,t = ai,t}
N
i=1 | {Z

t−1
i = at−1

i }
N
i=1

)

=

n
∏

t=1

N
∏

i=1

(

Si,t−1

)ai,t
(

1− Si,t−1

)1−ai,t

, (2.5)

where Si,t = Si,t(a
t
1, · · · , a

t
N) is defined in (2.4). Similar to the classical Polya urn pro-

cess, we are interested in studying the asymptotic behaviour of each node’s contagion

process {Zi,n}∞n=1, i ∈ V , since understanding many interesting questions regarding

the limiting behaviour of epidemics on networks and formulating curing strategies

are closely related to this problem. With the above explicit joint distribution, it

is possible to determine the distributions of each node’s process. More specifically,

using (2.5), the n-fold distribution of node i’s process at time t ≥ n is

P
(n)
i,t (ai,t−n+1, ..., ai,t) :=

∑

at−n
i ∈{0,1}t−n

atj∈{0,1}
t:j 6=i

P
(t)
G (at1, · · · , a

t
N).

We define the average infection rate in the network at time n as

Ĩn :=
1

N

N
∑

i=1

P (Zi,n = 1) =
1

N

N
∑

i=1

P
(1)
i,n (1).

Since we say that node i is infected at time n when Zi,n = 1, P (Zi,n = 1) is the

marginal probability that node i is infected at time n. Hence to see the marginal

probability that an arbitrary node is infected at time n, we take the network-wide

average. Thus if Ĩn is high, the probability that an arbitrary node is infected is high.

Note that Ĩn is a function of the network topology (V, E), the initial placement of
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balls Ri and Bi, the draw processes {Zi,t}nt=1, and number of balls added {∆r,i(t)}nt=1

and {∆b,i(t)}nt=1 for each node i ∈ V . Unfortunately for an arbitrary network, the

above quantity does not yield an exact analytical formula (except in the simple case

of complete networks). As such, in general it is hard to mathematically analyze the

asymptotic behaviour of Ĩn, which we wish to minimize when attempting to cure an

epidemic. Instead we examine the asymptotic stochastic behaviour of two closely

related variables given by the average individual proportion of red balls at time n,

namely

Ũn :=
1

N

N
∑

i=1

Ui,n,

which we call the network susceptibility, and the average neighbourhood proportion

of red balls at time n,

S̃n :=
1

N

N
∑

i=1

Si,n,

which we call the network exposure. Through Equation (2.3) we see that if Ui,n

increases then this node-specific value causes Sj,n to increase for every neighbour j

of node i, and hence by equation (2.4) their conditional probabilities of drawing red

balls increase. More specifically,

↑ Ui,n

(2.3)
==⇒ ↑ Sj,n for all j ∈ N ′

i

(2.4)
==⇒ ↑ P

(

Zi,n+1 = 1|{Zn
j }

N
j=1

)

for all j ∈ N ′
i .

Thus if Ũn is high, then this average measure of individual nodes implies that the

conditional probability of a node being infected is higher on average. Hence Ũn

can be understood as the average node prevalence of infection. The effect of the

network exposure on this conditional probability is more direct, since Equation (2.4)

shows that S̃n is in fact the network-wide average of the conditional probability of

infection, which is a quantity that is intimately related to the state of infection in the
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neighbourhood of node i. Thus S̃n represents the average neighbourhood prevalence

of infection. Note that similarly to Ĩn, both Ũn and S̃n are functions of the network

variables.

2.1 Stochastic Properties

We next examine the stochastic properties of the network contagion process. We

assume throughout the beginning of this section that ∆r,i(t) = ∆b,i(t) = ∆ > 0, for

all i ∈ V and times t; that is the net number of red and black balls added are equal

and constant in time for all nodes. In the case of a complete network, the composition

of every nodes’ super urn is identical, since there is only one super urn that is being

drawn from. Thus for a complete network the super urn model is analogous to one

urn where multiple draws occur with replacement, which has been recently studied

in detail [16]. However, the analysis in [16] is carried out in an aggregate sense, i.e.,

only for the entire urn and not individual processes. Unfortunately, this aggregate

approach does not work in a network setting, whereas the super urn model proposed

here is applicable.

2.1.1 Complete Network Marginal Distributions

We first focus on the special case of complete networks to derive some useful proba-

bility distributions; later on, we will obtain other stochastic properties that apply to

more general networks. Given that the network is complete, we focus on one of the

nodes, say i ∈ V . For ease of notation, we define T̄j =
∑N

k=1 Tk := T̄ , and similarly,

R̄j =: R̄, B̄j =: B̄, for all j ∈ V . Defining the events An−1 = {Zi,n−1 = an−1, ..., Zi,1 =

a1} and Wn−1

(

{bn−1
j }j 6=i

)

= {An−1, {Z
n−1
j = bn−1

j }j 6=i} with bn−1
j ∈ {0, 1}n−1, and
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parameters ρ = R̄
T̄
and δ = N∆

T̄
, using (2.4) under the above assumptions we have

P (Zi,n = 1, An−1)

=
∑

bn−1

j ∈{0,1}n−1:j 6=i

P
(

Zi,n = 1|Wn−1

(

{bn−1
j }j 6=i

))

P
(

Wn−1

(

{bn−1
j }j 6=i

))

=
∑

bn−1

j
:j 6=i

R̄ +∆
∑n−1

t=1

(

at +
∑

j 6=i bj,t

)

T̄ +
∑n−1

t=1

(

∆+
∑

j 6=i∆
) P

(

Wn−1

(

{bn−1
j }j 6=i

))

=
∑

bn−1

j :j 6=i

ρ+ δ
N

∑n−1
t=1

(

at +
∑

j 6=i bj,t

)

1 + (n− 1)δ
P
(

Wn−1

(

{bn−1
j }j 6=i

))

=
∑

bn−1

j :j 6=i

[

ρ
P
(

Wn−1

(

{bn−1
j }j 6=i

))

1 + (n− 1)δ
+

δ

N

n−1
∑

t=1

(

at
P
(

Wn−1

(

{bn−1
j }j 6=i

))

1 + (n− 1)δ

+
∑

j 6=i

bj,tP
(

Wn−1

(

{bn−1
j }j 6=i

))

1 + (n− 1)δ

)]

. (2.6)

By examining an arbitrary term k 6= i in the final sum above, for fixed t ∈ {1, ..., n−1},

we can sum out all the other draw variables:

∑

bn−1

j ∈{0,1}n−1:j 6=i

bk,tP
(

Wn−1

(

{bn−1
j }j 6=i

))

=
∑

bn−1

j ∈{0,1}n−1:j 6=i

bk,tP (An−1, {Z
n−1
j = bn−1

j }j 6=i)

=
∑

bn−1

k
∈{0,1}n−1

bk,tP (An−1, Z
n−1
k = bn−1

k )

=
∑

bk,t∈{0,1}

bk,tP (An−1, Zk,t = bk,t)

= P (An−1, Zk,t = 1). (2.7)

Further, by the law of total probability,

∑

bn−1

j ∈{0,1}n−1:j 6=i

P (An−1, {Z
n−1
j = bn−1

j }j 6=i) = P (An−1). (2.8)
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So using (2.7) and (2.8), (2.6) becomes

ρP (An−1) +
δ
N

∑n−1
t=1

[

atP (An−1) +
∑

j 6=i P (An−1, Zj,t = 1)
]

1 + (n− 1)δ
.

Thus, using the law of total probability, we have

P (Zi,n = 1)

=
∑

an−1∈{0,1}n−1

P (Zi,n = 1, An−1)

=
∑

an−1

[

ρP (An−1) +
δ
N

∑n−1
t=1 atP (An−1)

1 + (n− 1)δ
+

δ
N

∑n−1
t=1

∑

j 6=i P (An−1, Zj,t = 1)

1 + (n− 1)δ

]

=
ρ+ δ

N

∑n−1
t=1

∑N

j=1 P (Zj,t = 1)

1 + (n− 1)δ
. (2.9)

An interesting corollary of this derivation is as follows.

Lemma 2.1.1. (Complete Network Marginal Distribution): The one dimen-

sional marginal distribution of node i’s contagion draw process {Zi,n}∞n=1 for the N-

node complete network is given by

P
(1)
i,n = P (Zi,n = a) = ρa(1− ρ)1−a,

where i ∈ V , n ≥ 1, and a ∈ {0, 1}.

Proof. We proceed using strong induction on n ≥ 1, showing that P (Zi,n = 1) = ρ,

for all nodes i ∈ V and all n. The base case readily holds, since at time n = 1,

P (Z1,1 = 1) = · · · = P (ZN,1 = 1) =

∑N

i=1Ri
∑N

i=1 Ti

= ρ.

Now, assuming that P (Zj,t = 1) = ρ for all j ∈ V and t ≤ n and using (2.9), we have

P (Zi,n+1 = 1) =
ρ+ δ

N

∑n
t=1

∑N
j=1 P (Zj,t = 1)

1 + nδ

=
ρ+

∑n

t=1
δ
N
Nρ

1 + nδ
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=
ρ+ δ

∑n

t=1 ρ

1 + nδ
= ρ,

which completes the induction argument. The result now follows using the fact that

P (Zj,n = 1) + P (Zj,n = 0) = 1⇒ P (Zj,n = 0) = 1− ρ,

for all j ∈ V and all n.

This result is analogous to the result we saw for the classical Polya process, and

implies that the network Polya contagion process is stationary in its 1-fold distribu-

tion. In fact, it is possible to show that our process exhibits stationarity behaviour

in some higher-order distributions as well. In our next result, we will see that there

is a consistent relationship between the draws at the 1st and nth time steps.

Lemma 2.1.2. (Complete Network (n, 1)-step Marginal Probability): For

the complete network, the 2-dimensional marginal probability that node i’s draw vari-

ables at times n and 1 are both one is given by

P (Zi,n = 1, Zi,1 = 1) = ρ
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ
,

for i ∈ V , n ≥ 2. Furthermore, for any other node k,

P (Zk,n = 1, Zi,1 = 1) = ρ
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ
.

Proof. By Lemma 2.1.1 we have that P (Zk,1 = 1) = ρ for all k ∈ V , so it is enough

to show that

P (Zk,n = 1 | Zi,1 = 1) =
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ
(2.10)

for all n and nodes i and k. Using the law of total probability, (2.4), and after some

simplifications, with Wn−1

(

an−1
2 , {bn−1

j }j 6=i

)

:= {Zn−1
i,2 = an−1

2 , {Zn−1
j,1 = bn−1

j,1 }j 6=i}, we
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have that

P (Zi,n = 1 | Zi,1 = 1)

=
∑

an−1

2
∈{0,1}n−2

bn−1

j,1 ∈{0,1}n−1:j 6=i

P
(

Zi,n = 1 | Zi,1 = 1,Wn−1

(

an−1
2 , {bn−1

j }j 6=i

))

× P
(

Wn−1

(

an−1
2 , {bn−1

j }j 6=i

)

| Zi,1 = 1
)

=
∑

an−1

2
,bn−1

j,1
:j 6=i

ρ+ δ
N
(1 +

∑n−1
t=2 at +

∑n−1
t=1

∑

j 6=i bj,t)

1 + (n− 1)δ
P
(

Wn−1

(

an−1
2 , {bn−1

j }j 6=i

)

| Zi,1 = 1
)

=
∑

an−1

2
,bn−1

j,1 :j 6=i

P
(

Wn−1

(

an−1
2 , {bn−1

j }j 6=i

)

| Zi,1 = 1
)

1 + (n− 1)δ

[

(

ρ+
δ

N

)

+
δ

N

n−1
∑

t=2

at +
δ

N

n−1
∑

t=1

bj,t

]

.

Then, after arranging terms and using the law of total probability for

∑

an−1

2
,bn−1

j,1 :j 6=i

bj,tP
(

Wn−1

(

an−1
2 , {bn−1

j }j 6=i

)

| Zi,1 = 1
)

= P (Zj,t = 1 | Zi,1 = 1),

we have

P (Zi,n = 1 | Zi,1 = 1)

=
(ρ+ δ

N
)(1)

1 + (n− 1)δ
+

δ
N

∑n−1
t=2 P (Zi,t = 1|Zi,1 = 1)

1 + (n− 1)δ
+

δ
N

∑n−1
t=1

∑

j 6=i P (Zj,t = 1|Zi,1 = 1)

1 + (n− 1)δ

=
ρ+ δ

N

∑

j 6=i P (Zj,1 = 1)

1 + (n− 1)δ
+

δ
N

[

1 +
∑N

j=1

∑n−1
t=2 P (Zj,t = 1|Zi,1 = 1)

]

1 + (n− 1)δ

=
ρ(1 + (N − 1) δ

N
)

1 + (n− 1)δ
+

δ
N

[

1 +
∑N

j=1

∑n−1
t=2 P (Zj,t = 1 | Zi,1 = 1)

]

1 + (n− 1)δ
. (2.11)

It can be similarly shown by symmetry of the complete network that (2.11) holds for

P (Zk,n = 1 | Zi,1 = 1) if k 6= i.

In order to show (2.10), we proceed using strong induction on n ≥ 2. For the base

case, setting n = 2 in (2.11), we have for any i, k ∈ V ,

P (Zk,2 = 1|Zi,1 = 1) =
ρ(1 + (N − 1) δ

N
) + δ

N

1 + δ
=

ρ+ (1 + (N − 1)ρ) δ
N

1 + δ
.
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as desired. Assume now that P (Zk,t = 1 | Zi,1 = 1) is given by (2.10), for 2 ≤ t ≤ n−1

and any i, k ∈ V . Then by (2.11),

P (Zk,n = 1 | Zi,1 = 1)

=
ρ(1 + (N − 1) δ

N
)

1 + (n− 1)δ
+

δ
N

[

1 +
∑N

j=1

∑n−1
t=2 P (Zj,t = 1 | Zi,1 = 1)

]

1 + (n− 1)δ

=
ρ(1 + (N − 1) δ

N
) + δ

N

[

N(n− 2)
ρ+(1+(N−1)ρ) δ

N

1+δ

]

1 + (n− 1)δ

=
1

1 + (n− 1)δ

[

(1 + δ)
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ
+ δ(n− 2)

ρ+ (1 + (N − 1)ρ) δ
N

1 + δ

]

=
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ
×

(1 + δ) + δ(n− 2)

1 + (n− 1)δ

=
ρ+ (1 + (N − 1)ρ) δ

N

1 + δ
,

which completes the induction argument.

While these two results suggest that the network Polya contagion process is sta-

tionary, we may show that each node’s draw process is not stationary in general, and

hence is different from the classical Polya(ρc, δc) process.

Remark 2.1.3. (Non-Stationarity of the Network Contagion Process): Con-

sider a 2-node complete network. Then, using (2.5), one can obtain (after some

simplifications) that

P (Z1,2 = 1, Z1,1 = 1) = ρ
ρ+ (1 + ρ) δ

2

1 + δ
,

P (Z1,3 = 1, Z1,2 = 1) =
∑

a1∈{0,1}
b3∈{0,1}3

P (Z1,1 = a1, {Z1,t = 1}3t=2, {Z2,t = bt}
3
t=1)

= ρ
4ρ+ δ(2 + 14ρ) + δ2(6 + 14ρ) + δ3(5 + 3ρ)

4(1 + δ)2(1 + 2δ)
,

and hence the network process is not stationary. •
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(a) Plot of P (Zi,n = 1, Zi,n−1 = 1) (b) 5-node Barabasi-Albert network [4]

Figure 2.2: Simulated values for P (Zi,n = 1, Zi,n−1 = 1) for an arbitrary node i
averaged over 50,000 simulated trials. Here we observe asymptotic stationarity, as for
some large enough n deviations from the settled value are very small in magnitude.

Since every exchangeable process is necessarily stationary, Remark 2.1.3 implies

that the network Polya process is also not exchangeable in general. Although this

is the case, simulated results suggest that it satisfies some asymptotic stationarity

properties. While precise definitions for asymptotic stationarity exist [45], here we

simply mean that given sufficient time, the joint probability distribution of the process

settles. A representative example of this phenomenon is shown in Figure 2.2 for the 2-

dimensional distribution at times n and n−1 in a 5-node network. This phenomenon

along with the results of Lemmas 2.1.1 and 2.1.2 motivates the use of the classical

Polya process, which we know is stationary, to approximate the draw process of a

single node, as seen in Section 2.3.

2.1.2 Finite Memory

In some applications it makes sense for our process to have finite memory. The idea is

that balls that are added to urns remain only for a finite period of time, say M steps.

After this set amount of time, balls are removed from the urn. Hence, after the draw
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has occurred at time t and we have added the new balls, we would remove ∆r,i(t−M)

red balls or ∆b,i(t−M) black balls from node i’s urn, depending on what was added

M steps ago. This model is developed in [3] for the classical Polya process in the

context of modelling communication channels, where it is shown that the resulting

finite memory contagion process is stationary, Markovian and ergodic. We now prove

that we have similar results for the network Polya contagion process: the individual

processes are in fact quasi-Markovian, since they depend only on what has occurred

during the last M steps for the entire process, and the entire state is Markovian with

memory M .

Theorem 2.1.4. (Finite Memory Markovity): For the network Polya contagion

process with finite memory M , the individual draw processes {Zi,n}∞n=1 are quasi-

Markovian with memory M for all i ∈ V . Further, the draw process for the entire

network {Zn}∞n=1, where Zn = (Z1,n, . . . , ZN,n), is Markovian with memory M .

Proof. First we will focus on an arbitrary node i. By Equations (2.2) and (2.4) and

the fact that added balls are removed after M steps, we have for n > M that

P
(

Zi,n = 1 | {Zn−1
j }Nj=1

)

=
R̄i +

∑

j∈N ′
i

(

∑n−1
t=1 Zj,t∆r,j(t)−

∑n−M−1
t=1 Zj,t∆r,j(t)

)

∑

j∈N ′
i
Xj,n−1 −Xj,n−M−1

=
R̄i +

∑

j∈N ′
i

∑n−1
t=n−M Zj,t∆r,j(t)

T̄i +
∑

j∈N ′
i

∑n−1
t=n−M Zj,t∆r,j(t) + (1− Zj,t)∆b,j(t)

= P
(

Zi,n = 1 | {Zn−1
j,n−M}

N
j=1

)

.

Hence the individual draw process is quasi-Markovian in that it only cares about the

last M draws that have occurred in the whole network. Now we can examine the

entire draw process. So using the result above along with conditional independence
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of the draws, for a = (a1, . . . , aN) ∈ {0, 1}N we have for n > M that

P
(

Z1,n = a1, . . . , ZN,n = aN | {Z
n−1
j }Nj=1

)

=
N
∏

i=1

P
(

Zi,n = 1 | {Zn−1
j }Nj=1

)

=

N
∏

i=1

P
(

Zi,n = 1 | {Zn−1
j,n−M}

N
j=1

)

= P
(

Z1,n = a1, . . . , ZN,n = aN | {Z
n−1
j,n−M}

N
j=1

)

,

and hence the entire network process {Zn}∞n=1 is Markovian with memory M .

By the definition of the Markov property, this result suggests that the network

Polya contagion process with finite memory is a limited reinforcement process. The

effect of a draw is not permanent, and instead only persists for M steps; however,

during this time window it still continues to affect the evolution of the process. This

behaviour is interesting, and indeed one can study the upcoming subjects within this

context. However, herein we focus on the scenario with infinite memory and leave

this adaptation as an important future direction.

2.2 Martingale Theorems

We now turn our attention to the martingale properties of the network contagion

process, where we do not assume that the network is necessarily complete. Recall

that by the martingale convergence theorem, if a process {Zn}∞n=1 is a martingale

(or supermartingale, or submartingale), there exists a random variable Z such that

{Zn}∞n=1 converges almost surely to Z as n→∞.
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Theorem 2.2.1. (Individual Urn Proportion Martingale): For a network G =

(V, E), ∆r,i(n) = ∆b,i(n) = ∆ and Ti = T , for all i ∈ V and all n, the individual

proportion of red balls {Ui,n}
∞
n=1 is a martingale with respect to the draws for the whole

network {Zn}∞n=1 = {(Z1,n, ..., ZN,n)}∞n=1 if and only if, almost surely,

1

|Ni|

∑

j∈Ni

Uj,n−1 = Ui,n−1.

Proof. Using the expression for Ui,n, (2.3), and (2.4), we have

E[Ui,n | Zn−1] = E

[

∆Zi,n + Ui,n−1(T + (n− 1)∆)

T + n∆

∣

∣

∣
Zn−1

]

=
Ui,n−1(T + (n− 1)∆)

T + n∆
+

∆E[Zi,n | Zn−1]

T + n∆

= Ui,n−1
T + (n− 1)∆

T + n∆
+

∆P (Zi,n = 1|Zn−1)

T + n∆

= Ui,n−1

(

1−
∆

T + n∆

)

+
∆
∑

j∈N ′
i
Uj,n−1(T + (n− 1)∆)

(T + n∆)|N ′
i |(T + (n− 1)∆)

= Ui,n−1 −
∆Ui,n−1

T + n∆
+∆

Ui,n−1 +
∑

j∈Ni
Uj,n−1

|N ′
i |(T + n∆)

= Ui,n−1 +∆
(1− |N ′

i |)Ui,n−1 +
∑

j∈Ni
Uj,n−1

|N ′
i |(T + n∆)

= Ui,n−1 +∆

[

∑

j∈Ni
Uj,n−1

]

− |Ni|Ui,n−1

(T + n∆)(|Ni|+ 1)

= Ui,n−1 +
∆
∑

j∈Ni
(Uj,n−1 − Ui,n−1)

(T + n∆)(|Ni|+ 1)
. (2.12)

This implies that {Ui,n}∞n=1 is a martingale with respect to {Zn}∞n=1 if and only if

∑

j∈Ni

Uj,n−1 − Ui,n−1 = 0⇔
1

|Ni|

∑

j∈Ni

Uj,n−1 = Ui,n−1.

almost surely.

If the condition in Theorem 2.2.1 holds, we obtain by the martingale convergence

theorem [8, 23], that for any i, both Ui,n and 1
n

∑n
t=1 Zi,t converge almost surely to

a limit as n → ∞. However, the condition of Theorem 2.2.1, barring the trivial
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single node scenario (which reverts to the classical Polya scheme), is not verifiable.

To resolve this issue, we instead examine the evolution of the average proportion of

red balls (i.e., the susceptibility) in a regular network.

Theorem 2.2.2. (Regular Network Susceptibility Martingale): For a regular

network G = (V, E) with ∆r,i(n) = ∆b,i(n) = ∆ and Ti = T for all nodes i ∈ V and

times n, the network susceptibility {Ũn}∞n=1, where Ũn = 1
N

∑N
i=1 Ui,n, is a martingale

with respect to {Zn}
∞
n=1.

Proof. We have, similar to Theorem 2.2.1, that

E[Ũn | Zn−1] =
1

N

N
∑

i=1

E[Ui,n | Zn−1]

=
1

N

N
∑

i=1

[

Ui,n−1 +
∆
∑

j∈Ni
Uj,n−1 − Ui,n−1

(T + n∆)(|Ni|+ 1)

]

= Ũn−1 +
N
∑

i=1

∆
∑

j∈Ni
Uj,n−1 − Ui,n−1

N(T + n∆)(|Ni|+ 1)
.

Let us examine the second term of the last equality. If this term is zero, we will have

that {Ũn}∞n=1 is a martingale with respect to {Zn}∞n=1. We can rewrite this term by

defining the adjacency matrix [aij ] of our network, where the (i, j)th entry aij is 1 if

(i, j) ∈ E , and 0 otherwise. Since we assumed that our network was undirected, this

means that [aij] is symmetric, i.e., aij = aji for all i, j ∈ V . So let us rewrite the term

above:
N
∑

i=1

∆
∑

j∈Ni
Uj,n−1 − Ui,n−1

N(T + n∆)(|Ni|+ 1)
=

N
∑

i=1

∆
∑N

j=1 aij(Uj,n−1 − Ui,n−1)

N(T + n∆)(|Ni|+ 1)

=
∆

N(T + n∆)

N
∑

i=1

N
∑

j=1

aij(Uj,n−1 − Ui,n−1)

|Ni|+ 1
.

Now, we examine the sum of the (i, j) and (j, i) components of the double sum, where
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(i, j) ∈ E (otherwise both terms are zero). Recall that (i, i) 6∈ E , ∀i. We have

aij(Uj,n−1 − Ui,n−1)

|Ni|+ 1
+

aji(Ui,n−1 − Uj,n−1)

|Nj|+ 1

=
aij(Uj,n−1 − Ui,n−1)(|Nj|+ 1)

(|Ni|+ 1)(|Nj|+ 1)
+

aji(Ui,n−1 − Uj,n−1)(|Ni|+ 1)

(|Ni|+ 1)(|Nj|+ 1)

=
aij [Uj,n−1(|Nj| − |Ni|) + Ui,n−1(|Ni| − |Nj|)]

(|Ni|+ 1)(|Nj|+ 1)

=
aij(|Nj| − |Ni|)

(|Ni|+ 1)(|Nj|+ 1)

(

Uj,n−1 − Ui,n−1

)

.

From above, it is clear that this term is zero for all i and j by setting |Nj| = |Ni|, i.e.

in any regular network, and so {Ũn}
∞
n=1 is a martingale with respect to {Zn}

∞
n=1.

We next allow the net number of black balls ∆b,i(·) to evolve stochastically in time

as a function of the past draw history in the network in order to steer {Ui,n}∞n=1 to

a limit for every node i. An important assumption used herein is that the number

of red balls to be added ∆r,i(n) is known at least one step ahead of time so that in

particular for the natural filtration {Fn}
∞
n=1 on the entire history of draws {Zn}

∞
n=1,

∆r,i(n) is almost surely constant given Fn−1. A sufficient, but not necessary, condition

to satisfy this assumption is for {∆r,i(n)}∞n=1 to be set, for all i ∈ V , before the process

begins.

Theorem 2.2.3. (Individual Urn Proportion Categories): In a general network

G = (V, E), if we choose {∆b,i(n)}∞n=1 so that

∆b,i(n) ≥
∆r,i(n)(1− Ui,n−1)Si,n−1

Ui,n−1(1− Si,n−1)

almost surely for all n ∈ Z≥1 and i ∈ V (resp. equal to, less than or equal to) then

{Ui,n}∞n=1 is a supermartingale (resp. martingale, submartingale) with respect to the

natural filtration {Fn}∞n=1, i.e.,

E[Ui,n|Fn−1] ≤ Ui,n−1 almost surely ∀n ∈ Z≥1.



2.2. MARTINGALE THEOREMS 31

Proof. We will start with the case of a supermartingale. That is, we wish to show

that almost surely for all n ∈ Z≥1,

E[Ui,n | Fn−1]− Ui,n−1 ≤ 0⇔ E[Ui,n − Ui,n−1 | Fn−1] ≤ 0,

since Ui,n−1 is almost surely constant given Fn−1. Take Xi,n as in (2.2). We then

compute the difference Ui,n − Ui,n−1,

Ui,n − Ui,n−1

=
Ri +

∑n
t=1 ∆r,i(t)Zi,t

Xi,n

−
Ri +

∑n−1
t=1 ∆r,i(t)Zi,t

Xi,n−1

=
∆r,i(n)Zi,n

Xi,n

−
(Ri +

∑n−1
t=1 ∆r,i(t)Zi,t)(Xi,n −Xi,n−1)

Xi,n−1Xi,n

=
∆r,i(n)Zi,n − Ui,n−1(Xi,n −Xi,n−1)

Xi,n

=
∆r,i(n)Zi,n − Ui,n−1(∆r,i(n)Zi,n +∆b,i(n)(1− Zi,n))

Xi,n

.

Since Xi,n > 0 almost surely, for all n ∈ Z≥1, it will not change the sign of the

inequality later on, and so we can ignore it. Thus we wish to check if, almost surely,

E [∆r,i(n)Zi,n − Ui,n−1(∆r,i(n)Zi,n +∆b,i(n)(1− Zi,n))|Fn−1] ≤ 0.

Now if

∆b,i(n) ≥
∆r,i(n)(1− Ui,n−1)Si,n−1

Ui,n−1(1− Si,n−1)

almost surely, we have

E
[

∆r,i(n)Zi,n(1− Ui,n−1)− Ui,n−1(1− Zi,n)∆b,i(n)|Fn−1

]

≤ E

[

∆r,i(n)Zi,n(1− Ui,n−1)− Ui,n−1(1− Zi,n)
∆r,i(n)(1− Ui,n−1)Si,n−1

Ui,n−1(1− Si,n−1)

∣

∣

∣

∣

∣

Fn−1

]

= ∆r,i(n)(1− Ui,n−1)

[

Si,n−1 − (1− Si,n−1)
Si,n−1

1− Si,n−1

]

= 0,
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where the second to last equality comes from the fact that E[Zi,n|Fn−1] = P (Zi,n =

1|Fn−1) = Si,n−1 almost surely by (2.4), and that Si,n−1 is almost surely constant

given Fn−1. Thus as long as ∆b,i(n) obeys this bound almost surely for all n ∈ Z≥1,

{Ui,n}∞n=1 is a supermartingale with respect to {Zn}∞n=1. Similarly, if ∆b,i(n) is almost

surely equal (resp. less than or equal) to this bound, {Ui,n}∞n=1 is a martingale (resp.

submartingale) with respect to {Fn}∞n=1.

Corollary 2.2.4. (Network Susceptibility Supermartingale): In a general net-

work G = (V, E), if the curing policies {∆b,i(t)}∞t=1 obey the bound

∆b,i(n) ≥
∆r,i(n)(1− Ui,n−1)Si,n−1

Ui,n−1(1− Si,n−1)

almost surely for all nodes i ∈ V , then the network susceptibility {Ũn}∞n=1, where

Ũn = 1
N

∑N

i=1 Ui,n, is a supermartingale with respect to the natural filtration {Fn}∞n=1,

i.e.,

E[Ũn|Fn−1] ≤ Ũn−1 almost surely ∀n ∈ Z≥1.

Proof. Since Ũn is simply the average of the Ui,n’s for all i ∈ V , which are each

supermartingales under our conditions by Theorem 2.2.3, the network susceptibility

is itself a supermartingale.

While Corollary 2.2.4 is useful, the network exposure S̃n is more closely related

to the average infection rate Ĩn than the network susceptibility Ũn, since our draws

are taken from the super urn. It is with this in mind that we show the next results,

which give us sufficient conditions for {Si,n}∞n=1 and {S̃n}∞n=1 to be supermartingales.
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Theorem 2.2.5. (Super Urn Proportion Supermartingale): In a general net-

work G = (V, E), if the curing policy {∆b,i(t)}∞t=1 obeys the bound

∆b,i(n) > ∆r,i(n)
Si,n−1

1− Si,n−1
max

k s.t. i∈N
′

k

1− Sk,n−1

Sk,n−1

almost surely for all nodes i ∈ V , then the neighbourhood proportions of red balls

{Si,n}∞n=1 are strict supermartingales with respect to the natural filtration {Fn}∞n=1,

i.e.

E[Si,n|Fn−1] < Si,n−1 almost surely ∀i ∈ V, n ∈ Z≥1.

Proof. First, note that the question of {Si,n}∞n=1 being a strict supermartingale is

equivalent to

E[Si,n|Fn−1]− Si,n−1 < 0

where {Fn} is the natural filtration (indeed, we can just condition on Zn−1). Note,

in particular, that E[Zi,t|Fn] = Zi,t almost surely, for all i ∈ V and t ∈ {1, . . . , n},

and the same is true for {Si,t}
n
t=1. For ease of notation, we let

X̄i,n = T̄i +
∑

j∈N
′

i

n
∑

t=1

∆rZj,t +∆b,j(t)(1− Zj,t) =
∑

j∈N ′
i

Xj,t.

Then almost surely, as in Theorem 2.2.3,

Si,n − Si,n−1 =
Si,n−1(X̄i,n−1 − X̄i,n) +

∑

j∈N ′
i
∆r,j(n)Zj,n

X̄i,n

.

Since X̄i,n > 0 almost surely for all n ∈ Z≥1 and all i ∈ V , we can ignore it. Further,

since Si,n−1 is almost surely constant, we need only check if

E



Si,n−1(X̄i,n−1 − X̄i,n) +
∑

j∈N ′
i

∆r,j(n)Zj,n

∣

∣

∣

∣

∣

Fn−1



 ≤ 0.
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So,

E



Si,n−1(X̄i,n−1 − X̄i,n) +
∑

j∈N ′
i

∆r,j(n)Zj,n

∣

∣

∣

∣

∣

Fn−1





= E

[

− Si,n−1





∑

j∈N ′
i

∆r,j(n)Zj,n +∆b,j(n)(1− Zj,n)



+
∑

j∈N ′
i

∆r,j(n)Zj,n

∣

∣

∣

∣

∣

Fn−1

]

= E

[

∑

j∈N ′
i

∆r,j(n)(1− Si,n−1)Zj,n −∆b,j(n)Si,n−1(1− Zj,n)

∣

∣

∣

∣

∣

Fn−1

]

Now let

∆b,j(n) > ∆r,j(n)
Sj,n−1

1− Sj,n−1
max

k s.t. j∈N
′

k

1− Sk,n−1

Sk,n−1

Then, using this and the fact that E[Zj,n|Fn−1] = Sj,n−1 almost surely, we have

E



Si,n−1(X̄i,n−1 − X̄i,n) +
∑

j∈N ′
i

∆r,j(n)Zj,n

∣

∣

∣

∣

∣

Fn−1





< E

[

∑

j∈N ′
i

∆r,j(n)(1− Si,n−1)Zj,n +∆r,j(n)
Sj,n−1

Sj,n−1 − 1

× max
k s.t. j∈N

′

k

1− Sk,n−1

Sk,n−1

Si,n−1(1− Zj,n)

∣

∣

∣

∣

∣

Fn−1

]

=
∑

j∈N ′
i

∆r,j(n)Sj,n−1

[

1− Si,n−1 +
Si,n−1

Sj,n−1 − 1
max

k s.t. j∈N
′

k

1− Sk,n−1

Sk,n−1

(1− Sj,n−1)

]

=
∑

j∈N ′
i

∆r,j(n)Sj,n−1

[

1− Si,n−1

(

1 + max
k s.t. j∈N

′

k

1− Sk,n−1

Sk,n−1

)]

=
∑

j∈N ′
i

∆r,j(n)Sj,n−1

[

1− Si,n−1 max
k s.t. j∈N

′

k

1

Sk,n−1

]

=
∑

j∈N ′
i

∆r,j(n)Sj,n−1

[

1−
Si,n−1

min
k s.t. j∈N

′

k
Sk,n−1

]

.

Now, note that j ∈ N ′
i , and hence, in particular, min

k s.t. j∈N
′

k
Sk,n−1 ≤ Si,n−1 almost
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surely. Thus, with our value of ∆b,j(n) for all j ∈ N ′
i , we have almost surely

E



Si,n−1(X̄i,n−1 − X̄i,n) +
∑

j∈N ′
i

∆r,j(n)Zj,n

∣

∣

∣

∣

∣

Fn−1





<
∑

j∈N ′
i

∆r,j(n)Sj,n−1

[

1−
Si,n−1

min
k s.t. j∈N

′

k
Sk,n−1

]

≤ 0.

Thus, for any i ∈ V , if {∆b,i(n)}
∞
n=1 obeys its bound almost surely, the neighbourhood

proportion of red balls {Si,n}∞n=1 is a strict supermartingale.

Corollary 2.2.6. (Network Exposure Supermartingale): In a general network

G = (V, E), if the curing policies {∆b,i(t)}∞t=1 obey the bound

∆b,i(n) > ∆r,i(n)
Si,n−1

1− Si,n−1
max

k s.t. i∈N
′

k

1− Sk,n−1

Sk,n−1

almost surely for all nodes i ∈ V , then the network exposure {S̃n}∞n=1, where S̃n =

1
N

∑N

i=1 Si,n, is a strict supermartingale with respect to the natural filtration {Fn}∞n=1,

i.e.,

E[S̃n|Fn−1] < S̃n−1 almost surely ∀n ∈ Z≥1.

It is important to note that the policy for {∆b,i(t)}
∞
t=1 used in Theorem 2.2.5 is

not a tight lower bound, and hence it is possible that less costly policies exist which

will still guarantee that the processes {Si,n}∞n=1 are supermartingales. In particular,

strategies may exist which obey the fixed budget B on the amount of curing resources

that may be used. However, these results motivate the fact that the search for better

policies makes sense, since we know that policies exist that will fight the infection

and reduce it on average.
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2.3 Model Approximations

As previously noted, the dynamics of the network contagion process are complicated,

especially when considered on general networks. Even for the classical Polya process

stochastic approximations have been widely used; see [42] for a survey. For this

reason, in this section we develop two useful approximations to this process on a

general network that allow us to shed some light on its asymptotic behaviour.

Throughout this section, unless stated otherwise, we consider general network

topologies with ∆ri(t) = ∆b,i(t) = ∆ for all t ∈ Z≥1 and i ∈ V . However, to match

the 1-step and (n, 1)-step distributions, we make the simplifying assumption that the

neighbourhood of each node i can be represented as a complete network, i.e., all of its

neighbours are connected to one another, in order to apply Lemmas 2.1.1 and 2.1.2.

2.3.1 Approximation: Computational Model

We now introduce our first approximation technique, where we approximate the con-

tagion process of each node in the network with a classical Polya urn process.

Model I. (Computational Model): We approximate the dynamics of any node

i’s contagion process using a classical Polya process Polya(ρc = ρi, δc = δ̂i), with

ρi =

∑

j∈N
′

i
Rj

∑

j∈N
′

i
Tj

, and δ̂i = argmin
δ̃

1

n
D
(

P
(n)
i,n ||Q

(n)

ρi,δ̃

)

,

where

Q
(n)

ρi,δ̃
(an) =

Γ
(

1
δ̃

)

Γ
(

ρi
δ̃
+ ān

)

Γ
(

1−ρi
δ̃

+ n− ān
)

Γ
(

1
δ̃
+ n
)

Γ
(

ρi
δ̃

)

Γ
(

1−ρi
δ̃

)

is the n-fold distribution of the classical Polya process, Γ(·) is the Gamma function,

an = (a1, ..., an) ∈ {0, 1}n, and ān = a1 + · · ·+ an.
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Here ρc is chosen to be the proportion of red balls ρi in the node’s super urn, so that

the 1-dimensional distributions of the classical Polya process and the node process

{Zi,n} coincide as seen in Lemma 2.1.1, while δ̂i is set by performing a minimization

to find the value that best fits Q
(n)

ρi,δ̂i
to the distribution of {Zi,n}∞n=1 of node i ∈ V .

We use a divergence measure, denoted by D(·||·), to observe the quality of the fit.

The explicit derivation of the distribution Q
(n)

ρi,δ̂i
can be found in [21, 29]. This

method ensures that the fit of Q
(n)

ρi,δ̂i
is as close as possible under the given divergence

measure. Since we are measuring the error in using an approximating distribution,

we use the Kullback-Leibler divergence [17]; we thus have that

δ̂i = argmin
δ̃

1

n

∑

an∈{0,1}n

P
(n)
i,n (an) log

P
(n)
i,n (an)

Q
(n)

ρi,δ̃
(an)

= argmax
δ̃

1

n

∑

an∈{0,1}n

P
(n)
i,n (an) logQ

(n)

ρi,δ̃
(an)

since P
(n)
i,n (an) logP

(n)
i,n (an) is independent of δ̃. The approximating process is sta-

tionary and exchangeable, as it is a classical Polya process. We also know (from

Section 1.1) that it is non-ergodic with its sample average converging almost surely

to the Beta(ρi
δ̂i
, 1−ρ)i

δ̂i
) distribution. Calculating an analytic expression for the mini-

mizing δ̂i is not feasible in general, and hence should be performed computationally.

However, due to the above minimization, the value of δ̂i is, by definition, the best

way to fit a Polya process to the process {Zi,n}∞n=1 for a given i.

2.3.2 Approximation: Analytical Models

An alternative to Model I is to attempt to find approximations whose parameters can

be determined analytically.
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Model II(a). (Large-Network Analytical Model): For any given node i, we

approximate the dynamics of its process {Zi,n}∞n=1 by using a classical Polya process

Polya(ρc = ρi, δc = δ′i), with

ρi =

∑

j∈N
′

i
Rj

∑

j∈N
′

i
Tj

, and δ′i =
δi

N + (N − 1)δi
,

where δi =
N∆∑

j∈N
′

i

Tj
.

Here the parameters of the classical Polya process are chosen by directly match-

ing its first and (n, 1)-step second-order statistics with those of {Zi,n}∞n=1 from Lem-

mas 2.1.1 and 2.1.2. This method avoids the computational burden of the previous

model by yielding an analytical expression for the correlation parameter δ′i.

We next prove that under some stationarity and symmetry assumptions, the con-

tagion process running on each node in the network is statistically identical to the

classical Polya process of Model II(a).

Lemma 2.3.1. (Exact Representation): Suppose that

A1. P (Zi,1 = 1 | Zn−1
j,1 = an−1) = ρi, and

A2. P (Zi,t = 1|Zn−1
j,1 = an−1) = P (Zk,n = 1|Zn−1

j,1 = an−1),

for all n ≥ 1, 2 ≤ t < n, i, j, k ∈ V , an−1 ∈ {0, 1}n−1. Then for any node i in a

complete network, {Zi,n}∞n=1 is given exactly by the Polya(ρi, δ
′
i) process.

Proof. For any node i, we wish to show that for all n, the n-dimensional distributions

of {Zi,n}∞n=1 and the Polya(ρi, δ
′
i) process are identical. It is enough to show that the

conditional probability of one event given the whole past is the same, since any joint

probability can be written as a product of conditional probabilities. Let us define the
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events An−1 = {Z
n−1
i,1 = an−1} and Bn−1

(

{bn−1
j,1 }j 6=i

)

= {Zn−1
j,1 = bn−1

j,1 }j 6=i. Then,

Pi|n := P (Zi,n = 1 | An−1)

=
∑

bn−1

j,1 ∈{0,1}n−1:j 6=i

P
(

Zi,n = 1 | An−1, Bn−1

(

{bn−1
j,1 }j 6=i

))

P
(

Bn−1

(

{bn−1
j,1 }j 6=i

)

| An−1

)

=
∑

bn−1

j,1 :j 6=i

ρi +
δi
N

∑n−1
t=1 (at +

∑

j 6=i bj,t)

1 + (n− 1)δi
P
(

Bn−1

(

{bn−1
j,1 }j 6=i

)

| An−1

)

=
∑

bn−1

j,1
:j 6=i

ρi(1− (N − 1)δ′i) + δ′i
∑n−1

t=1 (at +
∑

j 6=i bj,t)

1 + (N(n− 2) + 1)δ′i
P
(

Bn−1

(

{bn−1
j,1 }j 6=i

)

| An−1

)

=
ρi(1− (N − 1)δ′i) + δ′i

∑n−1
t=1 at

1 + (N(n− 2) + 1)δ′i

∑

bn−1

j,1 :j 6=i

P
(

Bn−1

(

{bn−1
j,1 }j 6=i

)

| An−1

)

+
δ′i

1 + (N(n− 2) + 1)δ′i

n−1
∑

t=1

∑

j 6=i

∑

bn−1

j,1
:j 6=i

bj,tP
(

Bn−1

(

{bn−1
j,1 }j 6=i

)

| An−1

)

=

(

ρi(1− (N − 1)δ′i) + δ′i
∑n−1

t=1 at
)

· 1

1 + (N(n− 2) + 1)δ′i
+

δ′i
∑n−1

t=1

∑

j 6=i P (Zj,t = 1 | An−1)

1 + (N(n− 2) + 1)δ′i
.

Then using assumption A1, we have

Pi|n =
ρi(1− (N − 1)δ′i) + δ′i

∑n−1
t=1 at + δ′i(N − 1)ρi + δ′i

∑n−1
t=2

∑

j 6=i P (Zj,t = 1 | An−1)

1 + (N(n− 2) + 1)δ′i

=
ρi + δ′i

∑n−1
t=1

[

at +
∑

j 6=i P (Zj,t = 1 | An−1)
]

1 + (N(n− 2) + 1)δ′i

Now using assumption A2, we get

Pi|n =
ρi + δ′i

(

∑n−1
t=1 at +

∑n−1
t=2

∑

j 6=i Pi|n

)

1 + (N(n− 2) + 1)δ′i
=

ρ+ δ′i
(
∑n−1

t=1 at + (n− 2)(N − 1)Pi|n

)

1 + (N(n− 2) + 1)δ′i
.

Thus, we have that

Pi|n =
ρi + δ′i

(
∑n−1

t=1 at + (n− 2)(N − 1)Pi|n

)

1 + (N(n− 2) + 1)δ′i
⇒ Pi|n =

ρi + δ′i
∑n−1

t=1 at
1 + (n− 1)δ′i

,

which is the conditional probability P (Zn = 1|Zn−1
1 = an−1) for a Polya(ρi, δ

′
i) process.

A similar calculation can be performed for P (Zi,n = 0 | Zn−1
i,1 = an−1).
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Unfortunately in a general network setting assumptions A1 and A2 above do not

hold true. However, this result motivates the fact that this analytical approxima-

tion is reasonable to use for situations where these assumptions hold within tolerable

margins of error; empirical evidence indicates that this occurs for large values of N ,

since as N increases the quality of the fit improves. This approximation, neverthe-

less, drastically reduces the complexity in analyzing the individual contagion draw

processes, as closed-form expressions for the process parameters are available.

Figure 2.3: Illustration of contagion dilution.

Observation: (Contagion Dilution) In situations where the conditions of

Lemma 2.3.1 hold within an acceptable range of error, making Model II(a) a good ap-

proximation for the nodes’ contagion processes, we note that as the number of nodes

N increases and the network becomes more connected (in fact, closer to becoming

complete), the correlation parameter δ′ decreases. Indeed, δ′ → 0 as N → ∞, and

thus the draw variables of the process of each node become independent and identi-

cally distributed, since we are simply drawing with replacement. Hence for each node

i, by the strong law of large numbers, we know that the sample average 1
n

∑n
t=1 Zi,n

converges almost surely to a constant, which must be the expected value E[Zi,n] = ρ.

This means that for complete networks with a large enough number of nodes, the

sample average of draws is effectively constant at ρ, and so the average infection
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rate is stable and fixed at ρ. This implies that by increasing the number of nodes

in the network and by making the network fully connected (see Figure 2.3) so that

the conditions of Lemma 2.3.1 hold, we may limit the spread of contagion beyond

the initial level of infection ρ. The reduction of contagion spread effectively means

that all nodes average out their own individual initial infection and share it in the

network. For example, a large and highly connected group of healthy nodes and one

very infected node will eventually become a group of slightly less healthy individuals,

but none will be very infected. This means that the average infection rate Ĩn will be

almost surely less than or equal to ρ, but there are no guarantees that it do better,

regardless of the initial conditions. One can interpret the outcome of this discussion

in the framework of consensus or opinion dynamics, where contagion dilution would

drastically reduce the opinion of outliers with extreme views.

Model II(b). (Small-Network Analytic Model): Given any node i in the net-

work with a small to moderate number of nodes, we approximate the dynamics of its

contagion process {Zn}∞n=1 using a Polya(ρi, δ
⋆
i ) process, where

ρi =

∑N

i=1Ri
∑N

i=1 Ti

, and δ⋆i =
δi/N

N + (N − 1)δi/N
=

δi
N2 + (N − 1)δi

,

where δi =
N∆∑

j∈N
′

i

Tj
.

The idea behind this model is that we want to remove the dependence on the

number of nodes N from the parameter δi = N∆
T̄i

, and so we divide each instance

of δi in δ⋆i by N . Effectively, this means we are using a correlation parameter of ∆
T̄i

instead of δ = N∆
T̄i

. The idea is that as n grows, it eventually becomes significantly

larger than the relatively small number of nodes N , and so nN ≈ n. Hence, we may

consider that for a sufficiently large time, we have added n∆ balls to the super urn.

Simulation results show that this approximation captures the limit distribution of the
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Table 2.1: Approximation Usage Scenarios

Model Usage Scenario
I Exactness valued over analytic simplicity

II(a) Larger values of N , i.e., large network
II(b) Small to moderate values of N , i.e., small network

original process better than Model II(a) when the number of nodes is small. Figure 2.4

displays this relationship. A summary of all models presented in this section, and the

scenarios under which they are most suitable, is provided in Table 2.1.

We close this section with numerical demonstrations on the fitness of all models.

Figure 2.4 shows a representative comparison between the pdfs of the approxima-

tion models and the simulated histogram of 1
n

∑n

t=1 Zi,n, where n = 1000, for an

arbitrary node i in the given networks. Recall that the Beta(ρi
δ̂i
, 1−ρi

δ̂i
), Beta(ρi

δ′i
, 1−ρi

δ′i
)

and Beta( ρi
δ⋆
i
, 1−ρi

δ⋆
i
) pdfs are the distributions of the limit random variables to which

the sample average of the draw processes of Models I, II(a) and II(b) (respectively)

converge almost surely, as n → ∞ (see Section 1.1). We use complete networks

since they satisfy the assumption that all neighbourhoods are complete, as well as

Barabasi-Albert networks which have been shown to be a good model for real-world

social networks [4] and do not satisfy this assumption; however, our results show that

the approximations still fit quite well. As expected, Model I provides the best ap-

proximation in all scenarios, albeit without an analytic expression for its parameters

which can provide insight into the behaviour of the underlying process. Model II(a)

fits quite well when the number of nodes in the network is large, as seen in Figures 2.4b

and 2.4e, but fits poorly for a small number of nodes, which is evident in Figures 2.4a

and 2.4c. Model II(b) is the complement of Model II(a) in the sense that it fits very

well for a small number of nodes but poorly for a large network. Hence if analytic
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(a) 10-node complete network histogram.
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(e) 100-node Barabasi-Albert histogram. (f) 100-node Barabasi-Albert network [4]

Figure 2.4: Comparison of normalized simulated histograms for the sample average
of draws 1

n

∑n
t=1 Zi,t and Beta(ρi

δ̂i
, 1−ρi

δ̂i
),Beta(ρi

δ′i
, 1−ρi

δ′i
), and Beta( ρi

δ⋆i
, 1−ρi

δ⋆i
) pdfs from

Models I, II(a), and II(b), respectively, for arbitrary nodes with n = 1000, averaged
over 5, 000 trials. Here the initial conditions Ri, Bi and ∆r,i = ∆b,i = ∆ were
uniformly randomly assigned, but stayed consistent throughout all trials for each
network. These simulations took 10 minutes on a 4-core Intel Core i7 processor at
2.20 GHz.
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expressions for parameters are desired, Models II(a) and II(b) can be used depending

on the number of nodes to provide approximations that are only marginally worse

than the computational exactness of Model I.
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Chapter 3

Control of Epidemics

3.1 Problem Statement

The quantities {∆b,i(n)}∞n=1, which denote the net number of “healthy” balls added

to node i’s urn after each draw, can play the role of “healing or curing parameters”.

Our objective is to show that when these parameters are appropriately selected, one

can steer the average infection rate towards a desirable level; the selection of curing

parameters is, however, subject to an allowable budget on the maximal number of

healthy balls that can be added in the network. Let us state this problem formally.

Problem 3.1.1. (Average Infection Rate Budget Constraint): Minimize the

limiting average infection rate Ĩt subject to a budget B on the total healing at each

time step:

min∑N
i=1

∆b,i(t)≤B
∀t

lim sup
t→∞

Ĩt

While this is the main problem statement that we will consider in this work, a

number of different problems can be considered. A number of candidate problems

that were considered are presented below.
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Problem 3.1.2. (Average Infection Rate Threshold): Given a desired threshold

ǫ ∈ [0, 1], minimize the per-step budget B required to guarantee that the average

infection rate Ĩn is below ǫ:

inf

{

B ∈ R>0

∣

∣

∣

∣

∣

lim sup
t→∞

Ĩt ≤ ǫ with
N
∑

i=1

∆b,i(t) ≤ B ∀t

}

Problem 3.1.3. (Fixed Horizon Budget Constraint): Minimize the average

infection rate Ĩn over a finite time horizon [1, T ] subject to a budget B on the total

healing:

min∑T
t=1

∑N
i=1

∆b,i(t)≤B
ĨT

Problem 3.1.4. (Fixed Horizon Threshold): Given a desired threshold ǫ ∈ [0, 1]

and time window [1, T ], minimize the total budget B required to guarantee that the

average infection rate Ĩn is below ǫ:

min

{

B ∈ R>0

∣

∣

∣

∣

∣

ĨT ≤ ǫ with

T
∑

t=1

N
∑

i=1

∆b,i(t) ≤ B

}

Such optimal curing problems have been studied in many different contexts [40,

35]. For our model, the solution to Problem 3.1.1 would be an infinite horizon optimal

control policy that would yield the best possible level of epidemic elimination, given

the initial data. Finding such a policy in general appears to be difficult. Nevertheless,

as we demonstrate in the upcoming sections, one can obtain interesting analytical

results regarding the feasibility of this problem, and design algorithmic strategies to

curtail the average infection rate.

The supermartingale results established in the previous section demonstrate the

feasibility of a relaxed version of Problem 3.1.1, with no budget limitation. In this

section, we establish numerical methods to find control policies that find efficient

sub-optimal policies for Problem 3.1.1, under budget constraints and with having
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Table 3.1: Curing Strategies

(i) Forcing all Ui,n to be supermartingales (Theorem 2.2.3):

∆bi,(t) =
∆r,i(n)(1−Ui,n−1)Si,n−1

Ui,n−1(1−Si,n−1)

(ii) Forcing all Si,n to be supermartingales (Theorem 2.2.5):

∆b,i(t) = ∆r,i(n)
Si,n−1

1−Si,n−1

max
k s.t. i∈N

′

k

1−Sk,n−1

Sk,n−1

(iii) Constrained gradient descent algorithm on a simplex:
Find ∆b,i(t) using Algorithm 2

(iv) Ratio of degree, closeness centrality and super urn proportion:

∆b,i(t) = B
|Ni|CiSi,t−1

∑N
j=1

|Nj|CjSj,t−1

(v) Uniformly allocate the budget to all nodes in the network:
∆b,i(t) =

B
N

(vi) Mixed uniform and Si,n supermartingale strategy:

∆b,i(t) =

{

∆r,i(n)
Si,n−1

1−Si,n−1

max
k s.t. i∈N

′

k

1−Sk,n−1

Sk,n−1

,
∑t

s=t−W |∆b,i(t)−∆r| ≥ ǫ

∆r,i, otherwise

computational complexity in mind. We compare these strategies with the ones ob-

tained from our supermartingale results. A summary of all strategies that will be

discussed in this section is given in Table 3.1.

Before we present these strategies in detail, let us describe briefly how we have

evaluated their performance. The simulation platform for these strategies is outlined

in Algorithm 1. To achieve comparable results, independent trials of the process

are run with the same initial conditions ~R = (R1, . . . , RN), ~B = (B1, . . . , BN), and

~∆r = (∆r,1, . . . ,∆r,N) for each curing strategy, and results are then averaged to

evaluate expected performance. All results are presented in Chapter 4.
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Algorithm 1 Network contagion curing

A← adjacency matrix of the network
~R, ~B, ~∆r ∼ ⌈Uniform((0, 10])⌉N

B ←
∑N

i=1∆r,i

numCases← number of cases, each with a strategy
numTrials← number of trials to run for each case
steps← number of time steps for each trial
for c = 1 : numCases do

for s = 1 : numTrials do
~Zc,s ← RunTrial(A, ~R, ~B, ~∆r,B, steps, strategy)

~Zc =
1

numTrials

∑numTrials

s=1
~Zc,s

procedure RunTrial(A, ~R, ~B, ~∆r,B, steps, strategy)
Initialize Si,0, Ui,0 using Ri and Bi for all i ∈ V
for t = 1 : steps do

Assign ∆b,i(t) using strategy

Generate ~Y ∼ Uniform([0, 1])N

if Yi ≤ Si,t−1 then
Zi,t = 1

else
Zi,t = 0

Update Si,t, Ui,t using ∆r,i and ∆b,i(t) for all i ∈ V

3.2 Supermartingale Strategies

The supermartingales results that we have obtained in Section 2.2, specifically The-

orems 2.2.3 and 2.2.5, naturally lead to a class of curing strategies. In particular,

these strategies guarantee that Ũn and S̃n, respectively, are supermartingales. It is

worth reminding that our theoretical results do not necessarily imply that average

infection rate Ĩn forms a supermartingale. In spite of this, these strategies are still

viable options for curing, as far as enough resources are available. We next describe

the differences between the strategy given by individual urn proportions, and the one

given by super urn proportions.
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By Corollary 2.2.4, we know that strategy (i) guarantees that the network sus-

ceptibility Ũn will be a supermartingale. Hence we set the curing strategy for each

node so that it will force its own individual urn proportion of red balls to be a su-

permartingale. Since draws are taken from the super urns and not the individual

urns, the relationship between the reduction of Ũn and Ĩn is not a strong one and our

simulations suggests that this strategy does not appear to offer a large reduction in

the average infection rate in general. In contrast, the curing strategy given by Corol-

lary 2.2.6, where we choose our curing strategy to force the super urn proportions of

red balls to be supermartingales for all nodes, performs reasonably well.

3.2.1 Mixed Uniform Strategy

Due to the form of the Si,n supermartingale strategy (ii), the value of ∆b,i(t) can

become close to ∆r,i. When the values are within a threshold ǫ for some amount

of time, a reasonable approximation is to set ∆b,i(t) = ∆r,i. We thus introduce the

mixed uniform strategy; while
∑t

s=t−W |∆b,i(t)−∆r| ≥ ǫ we simply use strategy (ii),

but when the values are closer than ǫ over a time window W we set ∆b,i(t) = ∆r,i.

When this is the case for all nodes in a neighbourhood, say Ni, we may estimate the

limiting behaviour of node i using the approximation models presented in Section 2.3.

While we may try to do this on a per-node basis, it will not work for every node. The

condition for these models to apply is that ∆b,i(t) = ∆r,i(t) = ∆ in the neighbourhood

of the node whose process we wish to approximate. Empirical results suggest that as

the time grows, the processes settle and hence more nodes satisfy this condition.

The performance of the mixed uniform strategy is presented in Figure 3.1. To

make the condition ∆b,i(t) = ∆r,i(t) = ∆ easier to satisfy, we set ∆r,i = ∆r for all
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(a) 100-node Barabasi-Albert network [4]
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Figure 3.1: Comparison of normalized simulated histograms for the mixed uniform
strategy and pdfs from Models I and II(a), for arbitrary nodes with n = 5, 000,
averaged over 1, 000 simulated trials. The simulations presented here were set up
identically to those in Figure 2.4 and altogether took 20 minutes on a 4-core Intel
Core i7 processor at 2.20GHz.

i ∈ V . We set ǫ = 0.2 and W = 50, and so we use strategy (ii) until
∑t

s=t−50 |∆b,i(t)−

∆r| < 0.2, at which time we put ∆b,i(t) = ∆r. In Figure 3.1a we show the neighbour-

hood difference between ∆b and ∆r, dN ′
i
:=
∑

j∈N ′
i

∑t
s=t−50 |∆b,j(t)−∆r|. We colour

the nodes based on the value of this difference. If dN ′
i
< 0.2 then node i is coloured

green since our condition is met; if 0.2 ≤ dN ′
i
< 1 then it is blue and our condition is

moderately close; if dN ′
i
> 1 then it is red since the condition is not met.



3.3. GRADIENT FLOW METHODS 51

While these strategies guarantee a reduction in their respective measures, they

use an arbitrary amount of curing resources to do so in general. In fact, as we will

see later, these strategies always use a large amount of curing resources relative to

the impact they have on reducing the average infection rate. To stay within the

framework of Problem 3.1.1, we will now examine a numerical curing strategy that

obeys a fixed budget on the per-step curing resources.

3.3 Gradient Flow Methods

In this section, we employ the well-known gradient descent algorithm [14] for Prob-

lem 3.1.1. As discussed earlier, using Ĩn as a measure of infection is computationally

expensive, and hence we instead focus on the network exposure S̃n. While our sug-

gested gradient descent algorithm will not provide the exact answer to Problem 3.1.1

for reducing Ĩn, we will show that it is guaranteed to provide the optimal policy to

reduce the closely related measure S̃n.

In Problem 3.1.1, our curing policy is constrained by a budget B at each time step

and so the feasible set, or set of valid curing policies, for our gradient descent is all poli-

cies which do not exceed B. However, any optimal policy will make use of the whole

budget, and so our feasible set is X =
{

{∆b,i(n)}Ni=1 ∈ R
N
≥0 |

∑N

i=1∆b,i(n) = B
}

.

Proposition 3.3.1 shows that for arbitrary initial conditions and network topologies,

the problem under study for the expected network exposure E[S̃n|Fn−1] is convex.
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Proposition 3.3.1. (Gradient descent conditions are met): In a general net-

work G = (V, E) with arbitrary initial conditions, the expected network exposure

E[S̃n|Fn−1] is convex with respect to the curing parameters {∆b,i(n)}
N
i=1 for all n.

Furthermore, the feasible set

X =

{

{∆b,i(n)}
N
i=1 ∈ R

N
≥0

∣

∣

∣

∣

∣

N
∑

i=1

∆b,i(n) = B

}

is convex and compact.

Proof. First note that as a function of the parameters x = (∆b,1(n), . . . ,∆b,N(n)),

E[S̃n|Fn−1] is of the form

fn(x) =
1

N

N
∑

i=1

ci
di + σi(x)

where from (2.3), we can see that

ci = R̄i +∆r,j(n)E[Zj,n|Fn−1] +

n−1
∑

t=1

∑

j∈N ′
i

∆r,j(t)Zj,t,

di = ci + B̄i +
n−1
∑

t=1

∑

j∈N ′
i

∆b,i(t)(1− Zj,t), and

σi(x) =
∑

j∈N ′
i

xj(1− E[Zj,n|Fn−1]).

Note that a number of the variables above are random, but are almost surely constant

given Fn−1. We thus need to show that, for x, y ∈ R
N
≥0, λ ∈ [0, 1],

fn (λx+ (1− λ)y) ≤ λfn(x) + (1− λ)fn(y).

Firstly, note that

σi(λx+ (1− λ)y) =
∑

j∈N ′
i

[λx+ (1− λ)y]j (1− E[Zj,n|Fn−1])

=
∑

j∈N ′
i

(λxj + (1− λ)yj)(1−E[Zj,n|Fn−1])
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= λ
∑

j∈N ′
i

xj(1− E[Zj,n|Fn−1]) + (1− λ)
∑

j∈N ′
i

yj(1− E[Zj,n|Fn−1])

= λσi(x) + (1− λ)σi(y).

Then,

fn (λx+ (1− λ)y)− λfn(x)− (1− λ)fn(y)

=
1

N

N
∑

i=1

ci
di + σi(λx+ (1− λ)y)

−
λci

di + σi(x)
−

(1− λ)ci
di + σi(y)

=
1

N

N
∑

i=1

ci
di + λσi(x) + (1− λ)σi(y)

−
λci

di + σi(x)
−

(1− λ)ci
di + σi(y)

=
1

N

N
∑

i=1

ci(di + σi(y))(di + σi(x))

(di + λσi(x) + (1− λ)σi(y))(di + σi(x))(di + σi(y))

−
ci(λ(σi(y)− σi(x)) + di + σi(x))(di + λσi(x) + (1− λ)σi(y))

(di + λσi(x) + (1− λ)σi(y))(di + σi(x))(di + σi(y))

=
1

N

N
∑

i=1

ciλ(λ− 1)(σi(x)− σi(y))
2

(di + λσi(x) + (1− λ)σi(y))(di + σi(x))(di + σi(y))

≤ 0,

since λ− 1 ≤ 0 and all other terms are nonnegative. Hence E[S̃n|Fn−1] is convex in

the curing parameters (∆b,1(n), . . . ,∆b,N(n)) for all time. Lastly, the constraint set
{

{∆b,i(n)}Ni=1 ∈ R
N
≥0 |

∑N
i=1∆b,i(n) = B

}

is clearly a finite-dimensional simplex and

hence convex and compact.

The structure of the feasible set X allows us to employ the simplex constrained

gradient descent method, see [14, Chapter 2]; this procedure is fully described in

Algorithm 2. The time complexity of this algorithm is of the order O(sa) at each

time step, where s is the stopping time of the gradient descent and 1
a
is the granularity

used to find the limit-minimized step size αk. While Proposition 3.3.1 guarantees that
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Algorithm 2 Constrained gradient descent on a simplex [14]

Start at an arbitrary node:
y1 = (B, 0, . . . , 0)

for k = 1 : stoptime do
Find the direction of steepest descent:
i = argminj∈V

∂f

∂xj

Move only in that direction:
[ȳk]i = B, and [ȳk]j = 0 for all j 6= i

Select the step size using the limit minimization rule:
αk = argminα∈[0,1] f(yk + α(ȳk − yk))

Perform the gradient descent:
yk+1 = yk + αk(ȳk − yk)

the curing policy that this algorithm finds will be optimal for each individual step,

it does not guarantee optimality over the entire time horizon. In spite of this, as the

simulation results in Figure 4.1 show, this curing strategy still outperforms all other

curing strategies studied in this paper. The downside of the gradient method is that

it is computationally expensive to execute, as it requires intimate knowledge of the

state of all nodes in the network. This motivates us to seek other methods which

are computationally easier to execute, although they do not perform as well as the

gradient descent strategy.

3.4 Heuristic Strategies

Both sets of strategies identified above come with challenges. The supermartingale

strategies are accompanied by analytical results that guarantee that they will improve

in general, but they do not obey a fixed budget, nor do they create a significant
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reduction in the average infection rate. The gradient flow method uses a fixed budget

and is provably optimal to reduce the expected network exposure E[S̃n|Fn−1], but it is

computationally costly and requires a large amount of information about the state of

infection at every node, including the entire history of draws and values of the curing

parameters. As a compromise between these strategies we present the centrality-

infection ratio strategy, which is a heuristic centrality-based strategy designed to

allocate the fixed per-step budget B.

The idea is to create a ratio to split the budget between all nodes in the network,

whose time complexity will be of the order O(1). We consider three factors when

determining how much curing a node should receive: local impact, topological posi-

tion, and level of infection. Nodes with higher local impact have more neighbours,

and hence any healing they receive is immediately distributed to a larger number of

nodes. Those with a better topological position are more centrally located within

the network, in the sense that the distance from them to all other nodes is smaller.

Lastly, nodes with a higher level of infection will need more curing resources to become

healthy.

The resulting curing strategy, which we call the centrality-infection ratio, is

∆b,i(t) = B
|Ni|CiSi,t−1

∑N
j=1 |Nj|CjSj,t−1

.

To measure local impact of node i, we use the degree, |Ni|, which measures the

number of neighbours for node i. Topological position is determined by calculating

the closeness centrality [12], which, for node i, is defined as

Ci :=
1

∑

j∈V d(i, j)
,

where d(i, j) is the length of the shortest path from node i to node j. Thus Ci will
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be higher than Cj if node i is closer to all other nodes than node j, in the sense that

the paths from node i will be shorter in total. Hence Ci gives more importance to the

nodes which are more central, and thus have more influence on the overall network.

Finally, to measure the level of infection, we use the super urn proportion of red balls

Si,n. From (2.4), we know that this quantity captures how likely it is for node i to be

infected at this time given the history of the process. Thus we give more importance

to nodes who are more likely to be infected, so that we may make them less likely to

be infected in the future.

The advantage of this heuristic strategy is twofold. Not only does it reduce com-

putational time complexity from O(sa) to O(1), it is also somewhat distributed in the

sense that it does not require constant information from the entire network. Unlike

the gradient descent algorithm, strategy (iv) simply needs to know information about

the network topology and the state of infection of each node. Since we assume that

our network’s graph is constant in time, this topological information is only required

initially and can be used thereafter. The only other information required from the

network at large is the sum of the super urn ratios
∑N

i=1 Si,n, and hence much less

information needs to be communicated through the network for the implementation

of this strategy.

Lastly, for comparison purposes we present the uniform curing strategy (v), which

splits the budget B equally to all nodes in the network. We use this strategy as a

benchmark to show the improvement achieved by intelligently assigning the curing

resources.
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Chapter 4

Simulation Results

4.1 Simulation Setup

In order to confirm the results of Theorems 2.2.3 and 2.2.5, a number of simulations

were performed; the pseudocode is outlined in Algorithm 1. While the simulations

performed had the numbers of red balls added ∆r,i vary between nodes, they were

constant in time. This was done to simplify the choice of the per-step budget, and

does not affect the execution of the simulations themselves. All initial conditions for

the simulations herein, as well as videos displaying the average performance of the

curing strategies, are available online.1

The network shown in Figure 4.1a was generated by using a tool [43] to crawl

through 500 posts in a Facebook group. Individuals who created posts or interacted

with others’ content are represented by nodes, while edges are created if individuals

interacted with the post or comment of another (by commenting on the post, or liking

the post or comment). The resulting graph has 1,363 nodes and 2,425 edges, and by

design represents the topology of a real social network.

1See: http://bit.ly/2szl8PY

http://bit.ly/2szl8PY
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We now provide a detailed description of the simulation, as described in Algo-

rithm 1. The values of Ri, Bi and ∆r,i were uniformly randomly assigned for each

node as integers between 1 and 10. These values remained consistent for all strategies

and throughout all trials that were performed. Since the values for ∆r,i were fixed

over time, the per-step budget was set at B =
∑N

i=1∆r,i. With the initial conditions

set, a number of trials were performed for each strategy. Each trial was performed

by successively drawing balls from super urns for a fixed number of time steps. At

time t, we first assigned the curing ∆b,i(t) based on the strategy selected. Then a

uniform random variable on [0, 1], Yi, was generated for each node i and compared to

the super urn proportion. If Yi < Si,t−1 then we say that a red ball was drawn and

so Zi,t = 1, otherwise we drew black and so Zi,t = 0. Based on what was drawn, we

added ∆r,i red or ∆b,i(t) black balls into node i’s urn, and hence its super urn and

those of its neighbours. At the end of each trial the draw variables were saved, and

then averaged over all trials to produce the empirical performance of the strategy.

4.2 Discussion of Simulation Results

In this section we present results obtained by running simulations using Algorithm 1.

Figure 4.1 displays results on the Facebook network with all curing strategies, except

the mixed uniform, for a short time window due to computational limitations with

the gradient descent strategy (iii). Figure 4.2 shows all other strategies for a longer

time frame, although the conclusions remain the same. Figure 4.3 shows the initial

and final individual states of a Barabasi-Albert network using the centrality-infection

ratio and uniform curing methods. Finally, in Figure 4.4, we see observe curing

performance on the Facebook network when the process has finite memory.
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(a) Facebook group network with 1,363 nodes and 2,425 edges.
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(ii) S̃n
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(v) Unif.

Average ρ

(b) Plot of empirical average infection rate Ĩn compared to the network-wide initial
level of infection ρ as defined in Equation (2.1) (lower means less infection).

Figure 4.1: Comparison of curing strategies in Table 3.1 except mixed uniform. Sim-
ulation results were averaged over 250 trials for each strategy, and altogether took
approximately 49 hours on 10 cores of an Intel Xeon processor at 2.20GHz. Initial
numbers of balls Ri and Bi, and numbers of red balls added ∆r,i (which remained con-
stant in time), were uniformly randomly assigned for each node but stayed consistent
throughout all trials and strategies, while the assignments of {∆b,i(t)}∞t=1 were differ-

ent for each strategy. Since the ∆r,i are constant, the budget was set as B =
∑N

i=1∆r,i.
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(iv) Ratio

(v) Unif.

(c) Plot of empirical average usage of curing resources,
∑N

i=1
∆b,i(t) (lower

means less curing resources used). Note that strategies (iii), (iv) and (v)’s
usages are fixed at the per-step budget B, and are overlaid.
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(d) Plot of empirical average wasted curing,
∑N

i=1

∑n

t=1
∆b,i(t)Zi,t (lower

means less curing resources assigned to nodes that did not use them).

Figure 4.1: (continued) Comparison of curing strategeies.
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Figure 4.2: Plot of empirical average infection rate Ĩn on the network shown in 4.1a
for a longer time frame. Strategies used are shown in Table I; (iii) was omitted due to
computational constraints. The simulations presented here were performed identically
to those described in Figure 4.1, with all initial conditions consistent between trials
and strategies. Results were averaged over 1,000 trials, and altogether took 30 hours
on 12 cores of an Intel Xeon processor at 2.20GHz.

Figures 4.1 and 4.2 show comparisons between the strategies outlined in Table 3.1.

It is important to note that only strategies (iii), (iv) and (v) in Table I have a budget

B on the amount of curing they can use. The other two strategies are allowed to vary

the total curing they use in time; the amount of resources each strategy consumes is

shown in Figure 4.1c. Figure 4.1d displays the average wasted curing resources for

each strategy.

Figures 4.1b and 4.2 compare the performance of all strategies described in Ta-

ble 3.1 on a Facebook network. Figure 4.1b includes the gradient flow algorithm,

while Figure 4.2 shows all other strategies over a longer time horizon. The bench-

mark uniform strategy (v) performs the worst, which is to be expected. Although
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(iii) is only proven to be optimal for the expected network exposure E[S̃n|Fn−1], these

results are seen to be effective for the average infection rate Ĩn as well; as we men-

tioned before, this strategy outperforms all other curing strategies described in this

paper. However, the heuristic strategy (iv) performs similarly while being far less

computationally difficult. The supermartingale strategies (i) and (ii) both reduce Ĩn

below the initial average infection rate in the network ρ, but are less effective in do-

ing so than the gradient flow and centrality-infection ratio methods. Strategy (i) sees

only an immediate small reduction in Ĩn, while strategy (ii) continually decreases Ĩn.

Hence it appears that forcing Ũn to be a supermartingale is not enough to guarantee

a large reduction in the average infection rate Ĩn, while guaranteeing that S̃n is a

supermartingale does seem to cause a reasonable decrease in Ĩn.

In Figure 4.1c we observe the amount of curing resources used by each strategy.

Since strategies (iii), (iv) and (v) all obey a per-step budget constraint their usages are

fixed. Both supermartingale strategies, which may use arbitrary amounts of curing

resources, initially use a larger amount of curing resources and then reduce their

usage. Strategy (i) appears to reduce curing consumption at first but then steadily

increase, while strategy (ii) continues to decrease its usage in time. Further, strategy

(i) uses almost 50% more curing resources than the budget B initially, while strategy

(ii)’s initial usage is only around 18% higher than B.

The amount of curing resources wasted by each strategy is displayed in Figure 4.1d.

Waste is defined as curing resources which were assigned to nodes that did not use

them since they displayed “infected” behaviour at that time, and so it is measured

as
∑N

i=1

∑n
t=1 ∆b,i(t)Zi,t. There is a correlation between the amount of resources

wasted and curing performance; strategies which waste less resources tend to be more
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effective at reducing the average infection rate Ĩn. However, this does not tell the full

story. The gradient flow algorithm has several spikes where it wastes more resources

than the centrality-infection ratio (iv), but this does not appear to affect its curing

performance. Furthermore, strategy (i) initially wastes less than strategy (ii) even

though it uses more curing resources, and it still performs worse with respect to

reduction in Ĩn. This suggests that optimal curing strategies not only waste less, but

also intelligently allocate their curing resources to make the best use of them.

Figure 4.3 shows the initial and final state of all nodes in a randomly generated

network for two different curing strategies. Barabasi-Albert networks are randomly

generated through preferential attachment and are widely used in the literature since

they have been shown to exhibit the properties of real social networks [4]. In Fig-

ure 4.3a we see that for such a network the centrality-infection ratio (iv) dramatically

outperforms uniform curing (v), as was the case for the social network shown in Fig-

ure 4.1a. After 1,000 time steps, strategy (iv) reduced the average infection rate

Ĩn to about 15%, and no node had an individual level of infection above 55%. In

comparison, strategy (v) barely reduced Ĩn below the initial average infection ρ, and

the individual infection of some nodes was above 90%. This result illustrates the

fact that intelligent allocation of curing resources is not only important to reduce the

network-wide average infection rate, but the infection of individual nodes as well.

Lastly, in Figure 4.4 we examine the process with finite memory, where added

balls remain for only 50 time steps. The comparison of curing performance show in

Figure 4.4a is similar to the infinite memory case; however, the average infection rate

Ĩn eventually stays constant in time for all strategies except the gradient flow (iii),

which sees a small increase. This suggests that the network Polya contagion process
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(a) Plot of empirical average infection rate Ĩn
over 1, 000 time steps.

0 0.5 1

(b) Plot of initial level of individual infection
for each node Ui,0.

0 0.5 1

(c) Plot of final individual infection for each
node Ui,n using centrality-infection ratio (iv).

0 0.5 1

(d) Plot of final individual infection for each
node Ui,n using uniform curing (v).

Figure 4.3: Comparison of curing strategies (iv) and (v) on a Barabasi-Albert net-
work [4] with 100 nodes and 99 edges. Here blue represents total healthiness (Ui,n = 0)
while red represents total infection (Ui,n = 1). Results were averaged over 1,000 trials
for each strategy, and altogether took 5 minutes on a 4-core Intel Core i7 processor
at 2.20 GHz. This simulation was performed identically to those in Figure 4.1, with
all initial conditions consistent between trials and strategies.

with finite memory may be stationary, and perhaps the initial transition probabilities

of the process are not that of its stationary distribution.

The results in Figure 4.4b are quite different than what was seen for the infinite

memory process in Figure 4.1c. While both supermartingale strategies initially re-

duce their usage as seen previously, they then slowly increase their usage in time.
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(a) Plot of empirical average infection rate Ĩn (lower means less infection).
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(b) Plot of empirical usage of curing resources,
∑N

i=1
∆b,i(t) (lower means less used). Strate-

gies (iii)–(v)’s usages are overlaid at budget B.
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(c) Plot of empirical average wasted curing,
∑N

i=1
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∆b,i(t)Zi,t (lower means less as-

signed to nodes that did not use them).

Figure 4.4: Plot of empirical average infection rate Ĩn on the network shown in 4.1a
with finite memory of 50 steps. Strategies used are shown in Table I, and simulations
were performed identically to those described in Figure 4.1 with all initial conditions
consistent between trials and strategies. Results were averaged over 1,000 trials, and
altogether took 83 hours on 12 cores of an Intel Xeon processor at 2.20GHz.
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Strategy (i) in particular appears to need a steady increase in curing resources to be

able to guarantee that the susceptibility Ũn remains a supermartingale. In contrast,

Figure 4.4c is similar to what was seen for the infinite memory process. Only the gra-

dient flow (iii) exhibits different usage; it wastes more than the centrality-infection

ratio (iv), and exhibits many more spikes in waste than in the infinite memory case.

4.2.1 Comparison with SIS model

We now provide a number of empirical results through which to compare our model,

with both finite and infinite memory, to the traditional discrete time SIS model [46].

In the SIS model, the parameter δSIS denotes the probability that a node will recover

from infection, and βSIS is the probability that a node will become infected through

contact with a single infected neighbour. The dynamics are described through the

probability that any node i will be infected at time t, Pi(t), which evolves according

to the equation

Pi(t+ 1) = Pi(t)(1− δSIS) + (1− Pi(t))
(

1−
∏

j∈Ni

(1− βSISPj(t))
)

.

Note in particular that this model exhibits Markovian behaviour, since the evolution

of the process depends only on the probability of infection from the previous time

step. We make the simplifying assumption that δSIS and βSIS remain the same for

all nodes and throughout time, and hence we will compare it with the network Polya

contagion process when ∆r and ∆b are similarly fixed in time and throughout the

network.

The concept of an epidemic threshold for the SIS model gives a value through

which one may determine whether the epidemic dies, a priori using only the system

parameters [46]. The threshold condition is directly related to the largest-magnitude
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Inf. memory Ĩn
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= 1 and λmax > 1. (d) 100-node Barabasi-Albert network [4].

Figure 4.5: Comparison between the discrete time SIS model average infection rate
1
N

∑N
i=1 Pi(n) and the network Polya contagion process average infection rate Ĩn.

Simulation results were averaged over 5, 000 trials, and parameters were randomly
assigned but consistent throughout all trials for a given case. Here λmax ≈ 5.05,
βSIS = 0.15 and ∆r = 2 for all cases, while δSIS and ∆b were set according to the
ratios given above.

eigenvalue λmax of the adjacency matrix of the underlying graph of the network, and

states that if δSIS > βSISλmax then the epidemic will be eliminated after some time n,

i.e., eventually Pi(t) = 0 for all i and all t > n. Furthermore, it has been shown that

this threshold is tight, and indeed if δSIS < βSISλmax then some non-zero convergence

point exists, called an endemic state, and the epidemic will never be eliminated [2].

Figure 4.5 compares the behaviour of the SIS model and the network Polya con-

tagion process for different selections of these parameters. The initial probabilities of
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infection Pi(0) for the SIS model were set as the initial individual proportions of red

balls for the nodes Ri

Ti
. Further, we relate in Figures 4.5a–4.5c the parameters βSIS

and δSIS to ∆r and ∆b, respectively, using ratios of the largest-magnitude eigenvalue

λmax of the adjacency matrix of the graph shown in Figure 4.5d.

Figure 4.5a shows a comparison when the SIS model is displaying endemic be-

haviour. We see here that after a very short time the SIS model settles and shortly

thereafter the finite memory process settles (albeit to a different value), while for the

infinite memory process the individual rates of infection and hence the average Ĩn

continue to increase in time. Since both the SIS model and the finite memory process

have limited reinforcement while the infinite memory process does not, these results

are to be expected. Figure 4.5b displays a comparison where the epidemic threshold

is met and the epidemic dies for the SIS model. Here we see that Ĩn for both the infi-

nite and finite memory processes decreases and approaches zero, albeit not as quickly

as the SIS model. Hence we see that when the curing parameter ∆b is much larger

(in fact, more than five folds larger) than the infection parameter ∆r the epidemic

is eliminated, as we expect, and this behaviour of the SIS model is captured by the

network Polya contagion process. However, the finite memory process does not fully

approach zero, since the initial conditions Ri and Bi have a larger affect due to the

lower number of balls in all urns relative to the infinite memory process. Finally,

Figure 4.5c shows the case where the epidemic does not die and the parameters in

both models are set to be equal. We observe a similar trend between all models, with

the finite and infinite memory processes exhibiting near-identical behaviour.

Through these observations, we may conclude that both versions of the network

Polya contagion process may apply to the modelling of epidemics, albeit in different
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applications. The finite memory process exhibits behaviour that is more closely re-

lated to the SIS model since they are both limited reinforcement processes, and hence

it may be best suited to traditional biological diseases. The infinite memory process

obeys similar trends, but in the endemic state there are some interesting differences

since the effects of the infection continue to spread throughout the population as they

continue to interact with one another, whereas the SIS model quickly settles and does

not change in time. Thus with infinite memory the network Polya contagion process

is better suited to modelling opinion dynamics, the spread of ideas, and advertising

schemes.
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Chapter 5

Conclusion

In this work we introduced and described the network Polya contagion model, which

can be used for the analysis and control of epidemics on networks. We described the

process and its stochastic properties, giving expressions for the network-wide proba-

bility of infection spread as well as a number of marginal distributions. We showed

that it is not stationary and hence not exchangeable in general, but displays some

characteristics of asymptotic stationarity. We showed that with finite memory the

entire process is Markovian, while the individual node processes are quasi-Markovian

in the entire process. We presented a number of approximation models to estimate

the limiting behaviour of the process, and displayed their fitness through simulation

results.

We formulated an optimal control problem and provided analytical results that

show when a relaxed problem has a limit. We presented and compared theoretical,

numerical, and heuristic curing strategies to control the epidemic. Lastly, through

extensive simulation results we displayed the performance and behaviour of all curing

strategies.

A number of different future problems can be considered with this model. Firstly,
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curing problems that focus on a finite time window or a budget over a fixed horizon

could be explored. The allocation of a large fixed budget over a time horizon is more

realistic in the context of a viral infection, where a fixed supply of medicine may be

available. The effect of network topology on the process could be further explored;

for example, bipartite and star graphs could have interesting results. The level of

symmetry in bipartite graphs is similar to the complete graph, and so notions such

as exchangeability in the nodes instead of in time could be explored. The process

with finite memory could be studied more closely, for example to determine whether

it can be made stationary. The case of ∆r,i(t) varying in time could be explored in

further detail. Furthermore, the replacement matrix MR,i(t) could be modified to

allow nonzero terms in the off-diagonal entries. This could even be examined from a

game-theoretic perspective, wherein two decision makers attempt to shift the state of

the network to one extreme: either red or black. Finally, a consensus problem could

be formulated, with opinions being shared by the network Polya contagion process.
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