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Abstract

Consider a number of agents with limited communicating and data collecting ca-
pabilities that are deployed over a bounded region with an underlying information
density distribution. The goal of this project is to design distributed triggering
strategies for communication to balance the trade-off between collective informa-
tion gathered and frequency of communication within the network. Specifically,
these strategies were applied to aquatic robots tasked with gathering oceanographic
data. To better model this environment, a number of assumptions were made, such
as a maximum speed and a drift force to simulate ocean currents. The collective
amount of information gathered was maximized by having the agents perform the
discretized version of the continuous-time Lloyd’s algorithm. Two event-triggering
strategies were developed: constant triggering and non-constant triggering. The con-
stant triggering strategy had each agent communicate their current position when
they exceeded a constant distance r from their last communicated position. The
non-constant triggering strategy expanded upon this by making the radius agent-
specific as a function of the average distance between the agent and its neighbours.
Both triggering strategies resulted in a significant decrease in the number of com-
munications while sacrificing a relatively small amount of information gathered.
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1 Introduction

1.1 Project Scope

While still a relatively futuristic technology in terms of commercial implementation,
research in the areas of swarm intelligence and distributed network control have
been thriving over the past decade with significant progress being made in both
theoretical and applied fields. There is a plethora of theoretical topics available to
study in this field, but it is important to consider the engineering trade-offs faced
by these problems. When developing control algorithms for these systems, there are
many real world applications that must be accounted and designed for.

A number of applications could be derived from the basis of swarm theory and
network control such as a set of driverless cars which need to manoeuvre around
a parking lot without colliding with one another or stationary objects. While any
number of these complex examples could be imagined, in this project an application
was selected which could be more easily modelled so that results and findings would
be fit for real world implementation.

Research in this area [5] has detailed the functionality of a set of robotic agents
whose purpose was to collect oceanographic data over long periods of time while
trying to minimize movements and communications in order to preserve limited
power supplies and extend the time the agents could be in operation without being
recalled. While trying to preserve power, the agents were tasked with maximizing
the amount of information they were gathering as a network while only having the
ability to communicate with neighbouring agents. The trade-off between maximizing
the amount of information gathered by the network and minimizing the amount of
communication within the network was the chosen focus of this project.

The application in [5] was to model agents in an aquatic environment, so an
attempt was made to replicate some of the environmental effects the agents were
subject to in the model. This was accomplished through adding simulated ocean
currents and wave-action to the region in which the agents were operating. Before
proceeding to the development of strategies for agent behaviour to optimize the
communication-performance trade-off, the communication capabilities of the agents
needed to be established. Since the goal of the project was to explore distributed
algorithms, which are strategies which rely solely on local information, the agents
were only granted the ability to communicate with agents who were their immediate
neighbours.

Several additional assumptions were made in an attempt to make the simulation
platform more realistic with respect to the chosen application. Namely, the move-
ment capabilities of the agents were limited and the initial deployment was assumed
to be clustered as to simulate a redeployment of all agents.

After establishing a simulation environment, the goal of this project was to create
localized strategies to optimize the aforementioned trade-off between communica-
tions and network coverage. This was the design component of this project; at the
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time of implementation, optimizing this trade-off was very much an open problem
with no established solutions.

After developing a number of strategies and comparing their performance, the
objective was to determine the engineering implications of these findings. This
included how these results might yield cost savings in the oceanographic data col-
lection application, as well as other benefits such as reduced environmental impact
or improved data collection efficiency of the network.

1.2 Problem Statement

Given a set of agents with limited communicating and sensing capabilities, the ob-
jective is to design a distributed control algorithm to maximize the information
gathered while minimizing the energy consumed by lowering the number of commu-
nications between agents.

The approach considered was to design a number of distributed triggering strate-
gies to dictate when agents would communicate, as their movement behaviour would
be based on the last instance when they communicated with surrounding agents.

2 Mathematical Background

There are numerous mathematical definitions and concepts that were used through-
out the project. Unless otherwise stated, the content in this chapter is based on the
text Distributed Control of Robotic Networks written by F. Bullo, J. Cortés, and S.
Mart́ınez [1].

Suppose we have a bounded region S ⊂ Rd which is the area of interest. As-
sume there is a density function φ : S → R≥0 which represents the distribution of
information over S. In other words, at any point x ∈ S, the value of φ(x) indicates
the importance of that point. Finally, define a sensing function f : R≥0 → R as
a non-increasing function which represents the quality of the information that an
agent receives from a location x ∈ S.

2.1 The Expected-Value Multicenter Function

The goal is to capture the maximum amount of information in S, given a set of phys-
ical constraints, by optimally placing the sensing agents. In order to quantify how
much information is being captured, we introduce the expected-value multicenter
function Hexp.
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Definition 2.1. (Expected-Value Multicenter Function): Suppose
there are n sensing agents each with position pi. Given a density function φ and
sensing function f , define the expected-value multicenter function (EVMF) Hexp :
Sn → R as

Hexp(p1, . . . , pn) =

∫
S

max
i∈{1,...,n}

f(‖q − pi‖2)φ(q)dq (1)

Therefore the goal of maximizing information is equivalent to maximizing the
EVMF or equivalently Hexp. We now discuss the components that are used to
construct Hexp.

2.1.1 Voronoi Partitions

Definition 2.2. (Partition): A partition of a set S is a collection of closed con-
nected sets W1, . . . ,Wn ⊂ S which satisfy they following properties:

1. S =
⋃n
i=1Wi

2. (W̊j) ∩ (W̊k) = ∅, forj 6= k

Where W̊i denotes the interior of Wi.

Given a set of agent positions (p1, . . . , pn) distributed over a space S, each as-
signed to a partition Wi, we can rewrite the EVMF function as

Hexp(p1, . . . , pn,W1, . . . ,Wn) =
n∑
i=1

∫
Wi

max
i∈{1,...,n}

f(‖q − pi‖2)φ(q)dq (2)

Definition 2.3. (Voronoi Partitions): Given a set S ∈ Rd and n distinct points
P = {p1, . . . , pn} ⊂ S, the Voronoi partition of S with P is the collection of sets
V(P) = {V1(P), . . . ,Vn(P)} where

Vi(P) = {q ∈ S | ‖q − pi‖2 ≤ ‖q − pj‖2, ∀pj ∈ P} (3)

Theorem 2.1. (Optimality of Voronoi Partitions): Since the sensing function
f(‖q − pi‖2) is non-increasing with ‖q − pi‖, the optimal set of partitions which
maximize the value of the Hexp will be the Voronoi partitions.

Proof: See Proposition 2.13 in [1]. Intuitively, for a given point x ∈ S, the agent
which is closest to it should be the agent that collects data from x. This arrangement
exactly defines the Voronoi partition where each agent is assigned all space which
is closer to that agent than any other.
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2.1.2 Sensing Function

Sensing functions f : R≥0 → R are non-increasing piecewise continuously differ-
entiable functions with a finite number of jump discontinuities. These functions
determine the quality of the information received by the agent based on the dis-
tance to the point it is collecting data from. A few special cases are described
below.

Distortion Problem
The sensing function f(x) = −x2 results in a case called the distortion problem. The
justification for this sensing function is the inverse square law which states that a
specified physical quantity is inversely proportional to the square of the distance from
the source of that physical quantity. The distortion problem is relevant in disciplines
involving vector quantization, signal compression, and numerical integration.

Area Problem
The sensing function f(x) = 1 results in a case called the area problem since, when
φ(x) is uniform, Hexp becomes the total area covered by the agents.

In this project, we consider a mix of the distortion problem and the area problem.
The distortion problem is considered because agents are acquiring information from
a distance away from them. However, an assumption made is that agents can
perfectly acquire data within a distance α, and beyond that their sensing abilities
quickly decay to zero. This is more in line with the area problem. We call α the
sensing radius. The sensing function used for the agents is shown below.

f(x) =

{
1 if x ≤ α
e

−ψ
α

(x−α)2 if x > α
(4)

Figure 1: The sensing function f(x)

f(x) was defined to be a function that is unity until α, at which point it decays
smoothly to zero. The values of α and ψ would depend on the capabilities of the
sensor the agents are using, but in this case they were fixed at α = 0.05 and ψ = 80.
These values result in approximately a 68% disjoint network-wide coverage of S
when using 50 agents.
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2.1.3 Density Function

The density function φ(x) describes the distribution of information over S. Two
density functions were used in the simulations, both being time invariant and nor-
malized so that

∫
S
φ(q)dq = 1

The first distribution is symmetric and was named “Volcano”:

φ(x, y) = 1 + sin(8
√

(x− 0.5)2 + (y − 0.5)2) (5)

Figure 2: The Volcano distribution

The second distribution is asymmetric and was named “Islands”:

φ(x, y) =
1

0.13883
(0.7xe−49(x−0.8)

2 − 25(y − 0.6)2 + 1.5ye−16(x−0.3)
2

−36(y − 0.2)2 + 1.8xye−16(x−0.3)
2 − 36(y − 0.75)2) (6)

Figure 3: The Islands distribution
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2.2 Maximizing The Expected-Value Multicenter Function

One of the main objectives is to maximize Hexp while considering the trade-offs that
arise. It is shown below that with the current parameters and assumptions, a local
maximum can be achieved. There are two considerations for this local maximum:
the positioning of the agents to achieve a local maximum, and the method by which
they reach those positions.

Definition 2.4. (Local and Global Maximums): Suppose S is a metric space.
A real-valued function g : S → R has a:

1. Local maximum at xlmax ∈ S if g(xlmax) ≥ g(x), ∀x ∈ [xlmax − ε, xlmax + ε]
for some ε ∈ R

2. Global maximum at xgmax ∈ S if g(xgmax) ≥ g(x), ∀x ∈ S

Note that it is true that if xmax is a global maximum then it is a local maximum,
but the converse is not necessarily true. For this report, it is sufficient to find a local
maximum of Hexp. Since the density functions used will be smooth with a relatively
small number of local maximums, often a solution resulting in a local maximum will
achieve a global maximum.

2.2.1 Center of Mass

The idea of the center of mass is important because it will provide an algorithm to
reach a local maximum. For the following definitions, let S ⊂ Rd be the bounded
region of interest and let φ : Rd → R≥0 be the density function associated with the
region S.

Definition 2.5. (Mass): The mass of a bounded set B ⊂ S with a density function
φ is denoted Mφ(B) and can be computed by

Mφ(B) =

∫
S
φ(q)dq (7)

Definition 2.6. (Center of Mass1): The center of mass of a bounded set B ⊂ S
with a density function φ is denoted CMφ(B) and can be computed by

CMφ(B) =
1

Mφ(B)

∫
S
q · φ(q)dq (8)

1The centroid, which is often confused with the center of mass, is the point corresponding to
the center of mass when the distribution is uniform.

6



2.2.2 Differentiability of Hexp
In order to determine the desired position for an agent to maximize Hexp, it is
required that Hexp be differentiable.

Definition 2.7. (Globally Lipschitz): A function f : S → Rd is Globally Lips-
chitz if there exists K ∈ R>0 such that

‖f(x− y)‖2 ≤ K‖x− y‖2 ∀x, y ∈ S (9)

Theorem 2.2. (Differentiability of Hexp) : Given a set S ⊂ Rd that is bounded
and measurable, a density φ : R → R≥0, and a sensing function f : R≥0 → R, the
expected-value multicenter function Hexp : Sn → R is

1. Globally Lipschitz on S

2. Continuously differentiable on S where for i ∈ {1, . . . , n}
∂Hexp
∂pi

(P) =

∫
Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq

+
∑

a∈Dscn(f)

(f−(a) + f+(a))

∫
Vi(P)∩∂B(pi,a)

nout(q)φ(q)dq (10)

where Dscn(f) is the set of all discontinuities of f and nout is the outward normal
vector to the closed ball B(pi, a) .

Proof: See Proposition 2.1.6 in [1].

Now we can show how with n agents at positions p1, . . . , pn, sensing function
f(x) = −x2, and a Voronoi partition on the space, a locally optimal solution will
be obtained if each agent moves in the direction of the center of mass of its Voronoi
partition.

∂Hexp
∂pi

(P) =

∫
Vi(P)

∂

∂pi
f(‖q − pi‖2)φ(q)dq (11)

=

∫
Vi(P)

∂

∂pi
(−‖q − pi‖22)φ(q)dq (12)

= 2Mφ(Vi(P))(CMφ(Vi(P))− pi) (13)

The intermediate steps between lines (12) and (13) are a result of the Paral-
lel Axis Theorem. What this is saying is that a local maximum is reached when
∂Hexp
∂pi

(P) = 0 which is only the case when CMφ(Vi(P)) = pi. In other words, to
obtain a local maximum each agent should move so that its position pi is equivalent
to the center of mass of its Voronoi partition.
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2.2.3 Optimization Methods

Optimization problems can be phrased as maximizing or minimizing an objective
function within a set of constraints. There are many techniques and algorithms to
find a local maximum of a function.

Definition 2.8. (Gradient): The gradient of a scalar function f(x1, x2, . . . , xn)
is defined as

∇f =
∂f

∂x1
e1 + . . .+

∂f

∂xn
en (14)

where (e1, . . . , en) is the canonical basis of Rn.

As stated previously, we have determined that the optimal location for an agent
to maximize Hexp is at the center of mass of its Voronoi partition. We now look at
methods for getting the agent to that position. One of the simplest methods is the
method of steepest ascent.

Definition 2.9. (The Method of Steepest Ascent): Consider a starting point
x0 ∈ S with an underlying density function φ. The method of steepest ascent is an
iterative procedure where at each iteration the choice of direction is where φ increases
most quickly. In other words,

xk+1 = xk + λk∇f(xk) (15)

where λk dictates the step size in that direction.

For this project, λk can be interpreted as the velocity of each agent which will
be bounded by physical constraints. The method of steepest ascent is a first order
optimization method. The rate of convergence to a local maximum is relatively slow
because the agent will tend to “zig-zag” to the optimum solution, especially when
the function is non-concave.

The procedure of computing the centroid for each agent’s Voronoi and moving
linearly towards that point at each iteration is called Lloyd’s Algorithm. For this
project, because the density function is not uniform, Lloyd’s Algorithm is modified
to use the center of mass of each Voronoi.
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Definition 2.10. (Lloyd’s Algorithm): Suppose there is an initial placement
of n agents in a domain S. Lloyd’s Algorithm dictates the n agents perform the
following procedure:

1. The Voronoi of the n agents is computed

2. Integrate each Voronoi partition to find the centroid

3. Each agent moves to the centroid of its Voronoi partition

4. If convergence has not been achieved, repeat this process

In summary, Hexp will be locally maximized when all agents are at their center
of mass of their Voronoi partition. In order to reach this local maximum, agents
should move in a straight line towards their center of mass.

2.3 Stability

Stability theory analyzes the stability of solutions and trajectories of dynamical
systems under small perturbations of initial conditions.

2.3.1 Lyapunov Direct Method

Consider a dynamical system given by

ẋ = f(x, t) x(t0) = x0 x ∈ Rn (16)

Lyapunov’s direct method2 [6] allows us to determine the stability of the differen-
tial equation (16) without explicit integration. The idea is that if there is a measure
of the “energy” in the system, the stability can be determined by analyzing the rate
of change of the energy in that system. The equation that measures the energy will
be denoted V . For the definitions that follow, let Bε = {x ∈ Rn : ‖x‖ < ε}.

Definition 2.11. (Equilibrium Point): A point x∗ ∈ Rn is an equilibrium point
of the system (16) if f(x∗, t) = 0.

Definition 2.12. (Locally Positive Definite Functions): A continuous func-
tion V : Rn × R≥0 → R is a locally positive definite function if for some ε > 0 and
some continuous, strictly increasing function h : R≥0 → R,

V (0, t) = 0 and V (x, t) ≥ h(‖x‖) ∀x ∈ Bε,∀t ≥ 0 (17)

2The indirect method uses the linearization of the system to determine the local stability of the
original system
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Locally positive definite functions behave similarly to energy functions in a local
sense. Functions that are globally similar to energy functions are called positive
definite functions.

Definition 2.13. (Positive Definite Functions): A continuous function
V : Rn×R≥0 → R is a positive definite function if it satisfies the definitions of being
a locally positive definite function and if h(p)→∞ as p→∞

In order to bound the energy functions, we define decrescence.

Definition 2.14. (Decrescent Functions): A continuous function V : Rn ×
R≥0 → R is decrescent if for some ε > 0 and some continuous, strictly increasing
function g : R≥0 → R

V (x, t) = 0 ≤ g(‖x‖) ∀x ∈ Bε,∀t ≥ 0 (18)

The time derivative of V , denoted V̇ , is taken along the trajectories of the system
given by

V̇ = V̇ |ẋ=f(x,t) =
∂V

∂t
+
∂V

∂x
· f (19)

Using the previous definitions and the definition of the time derivative of V , the
theorem below allows us to determine the stability of the system by studying an
appropriate energy function [6].

Theorem 2.3. (Basic Theorem of Lyapunov): Let V (x, t) be a non-negative
function with derivative V̇ along the trajectories of the system.

1. If V (x, t) is locally positive definite and V̇ (x, t) ≤ 0 locally in x and for all t,
then the origin of the system is locally stable (in the sense of Lyapunov)

2. If V (x, t) is locally positive definite and decrescent, and V̇ (x, t) ≤ 0 locally in
x and for all t, then the origin of the system is uniformly locally stable (in the
sense of Lyapunov)

3. If V (x, t) is locally positive definite and decrescent, and −V̇ (x, t) is locally pos-
itive definite, then the origin of the system is uniformly locally asymptotically
stable.

4. If V (x, t) is locally positive definite and crescent, and −V̇ (x, t) is positive def-
inite, then the origin of the system is globally uniformly asymptotically stable.

As a rough summary, Theorem 2.3 is stating that when V (x, t) is a locally
positive definite function and V̇ (x, t) ≤ 0 then we can conclude the stability of the
equilibrium point.

10



2.4 Triggered Control

In many control applications involving sensors and wireless communications, control
tasks are executed periodically. However, choosing a constant period to execute
tasks often leads to over-utilization of resources. In the context of this project,
if an agent is close to its desired optimal position then it may no longer need to
continuously communicate with other agents because they would not have moved
significantly since the last communication. Two common control schemes to mitigate
the wasting of resources are event-triggering and self-triggering. Triggering refers
to a situation where the system actuates its control; in this context, the it would
communicate. Both methods use feedback of the system as opposed to the classical
time-triggering which is done in an open loop because it does not consider the status
of the system. As a result, the focus shifts from classical periodic control to aperiodic
control.

2.4.1 Event-Triggering

Event-triggering, which is the triggering strategy used in this project, is reactive and
generates control actuation when the state deviates more than a certain threshold
which is designed a priori [4]. Shown below is the main mathematical idea behind
event-triggering.

To simplify the ideas behind event-triggering, a linear model is used but the
result holds for non-linear systems as well [8]. Consider the linear system given by

d

dt
xp = Apxp +Bpu xp ∈ Rn, u ∈ Rn (20)

and assume there is a linear feedback control law

u = Kxp (21)

that makes the system (20) asymptotically stable. With this control law, the system
becomes

d

dt
xp = Apxp +BpKxp (22)

The problem of triggering strategies is how to implement the control law (21)
such that it avoids the inefficiencies described earlier by using the method of event-
triggering. The idea is to recompute (21) not at a periodic time frequency but rather
when the performance is unsatisfactory. An example of quantifying performance
can be seen by using a Lyapunov function V (xp) = xTp Pxp where P is a symmetric
positive-definite matrix and V (xp) satisfies

d

dt
V (xp(t)) =

∂V

∂xp
(Ap +BpK)xp = −xTpQxp (23)
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and where Q will be positive-definite. Since equation (23) is negative, the time
derivative of V is negative and hence along the solution of the closed-loop system,
V decreases. The rate at which V decreases is determined by Q. We are thus
guaranteed the inequality

d

dt
V (xp(t)) ≤ −σxTpQxp σ ∈ (0, 1) (24)

Here σ is a design parameter because a smaller value means the user is willing
to tolerate a slower rate of decrease before triggering, and so its exact value is
dependant on the application. The idea of event-triggering is that whenever (24)
is violated, the control is triggered. This event-triggering strategy has made the
periodicity of the controller independent of time. With the proper choice of σ, this
will result in a more efficient use of some system resources.

2.4.2 Self-Triggering

Self-triggering is proactive in the sense that the next control actuation is forecasted
using previously known data. Up until the forecasted time, the system does not
need to check any conditions to determine whether it should communicate.

Self-triggering is much more difficult to implement and design, which is why
event-triggering was the triggering method used for this project.

3 Simulation Design

3.1 Algorithm Progression

The model was simulated in MATLAB; throughout the course of the project, many
different versions of the simulation were created. Their main functionality and
implementation are described below. Their full descriptions can be found in Section
3.2.

3.1.1 Voronoi Partitions

The simulation began by displaying a set of points along with their Voronoi parti-
tions. To test the implementation of the partitioning algorithm, agents were ran-
domly deployed across the space S. The first problem encountered was that MAT-
LAB’s built-in Voronoi function did not limit the partitions; that is, they would
extend out of the space S off to infinity. To solve this problem, the VoronoiLimit
function (Section 3.2.4) was used and modified so that it would calculate the Voronoi
partitions of the agents limited to the space S = [0, 1]× [0, 1].
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3.1.2 Agent Movement

After the placement of the agents and the calculation of their Voronoi partitions
were in place, the next step was to implement movement. To make the problem
more realistic, as well as to challenge the robustness of all algorithms, the agents
were randomly deployed in a cluster within the region [0, 0.25]× [0, 0.25].

The most important consideration when deciding on an algorithm for move-
ment was that it be distributed; in other words, agents could decide where they
would move based only on information that was available locally. To this end,
the continuous-time Lloyd’s algorithm with discretized time-steps was implemented.
Using this algorithm allowed for the discretization of agent movement into uniform
time-steps while also guaranteeing locally maximum coverage of S. In this applica-
tion, it was deemed sufficient for agents to reach a locally optimal coverage because
finding a global optimum was an incredibly complex and open problem at the time
of implementation. At this stage the information density was set to be uniform, and
thus Lloyd’s algorithm simply required agents to follow the gradient flow; in this
case, they followed the path towards the centroid of their Voronoi partition. After
the implementation, it was observed that the agents moved to a locally optimal
coverage of the space regardless of their initial positions.

3.1.3 Information Density

After agent movement was in place, the information density was changed to be non-
uniform, as it would be in a real application. This proved to be challenging for a
number of reasons. The obvious change in the algorithm was that instead of an agent
moving toward its centroid, it now had to move towards its center of mass. In this
case, the mass is considered to be the amount of information in the cell. Finding
the center of mass proved to be incredibly difficult because a precise calculation
would involve the integration of the information density over an agent’s Voronoi
cell. Instead, the integral was approximated using a weighted sum calculation. The
main idea was to triangulate each cell using its vertices and centroid, weight each
triangle’s centroid using its mass, and then average these values to find the center
of mass of the cell. To start, each triangle was described as a set of vertices

Ti = {(x1i , y1i), (x2i , y2i), (xc, yc)} (25)

where (xc, yc) is the centroid and (x1i , y1i), (x2i , y2i) are adjacent vertices of the cell.
Next, a weighting factor was calculated for each triangle as

W (Ti) = Area(Ti) ·
φ(x1i , y1i) + φ(x2i , y2i) + φ(xc, yc)

3
(26)

Then the centroid of each individual triangle is found and denoted by
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C(Ti) = (xci , yci). The center of mass of the Voronoi cell was then calculated as

VCM ≈

n∑
i=1

C(Ti)W (Ti)

n∑
i=1

W (Ti)

(27)

With this calculation in place, each agent then followed the gradient flow towards
their center of mass. Once again Lloyd’s algorithm guaranteed that they would reach
a locally optimal coverage of the information density. An important remark is that
the center of mass is computed using only local information. As long as each agent
knows the borders of its Voronoi partition, as well as the information density inside
their Voronoi cell, the center of mass can be calculated. The agents can then find
the displacement vector, denoted ~d, between their current position and center of
mass and move as far along it as their max speed would allow.

3.1.4 Drift

In an effort to root the problem in a real world situation, the simulation was modified
to emulate a scenario where the agents were aquatic robots tasked with gathering
information in the ocean. To this end, a current was introduced that randomly
influenced the movement of the agents. The current was assumed to be uniform
across all agents, but changed with time in both magnitude and direction.

After the initial implementation of the current, henceforth referred to as drift,
the agents continued to move along ~d and let the drift push them as they went. It
was soon realized that this was not the most efficient way for the agents to move,
because they were acting as though the drift did not exist. This led us to the next
iteration of the algorithm which attempted to fight the drift.

Moving to counteract drift
Imposing the drift proved to be much more difficult than initially imagined. To
fight it, agents required knowledge of the drift at the previous time-step. To this
end, it was assumed that each agent had a sensor that could measure the drift it
had previously been subjected to, denoted driftpast. Using this knowledge, along
with the fact that the drift did not change drastically between time-steps, the agents
could estimate the effect it would have on their movement.

Defining moveagent as the direction that the agent would move in the absence
of drift and move , moveagent + drift as the net movement of the agent, simple
vector addition is used to determine how our agent should move:

moveagent = vmax
~d

‖~d‖
− driftpast (28)
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The resulting net movement of the agent is:

move = vmax
~d

‖~d‖
− driftpast + drift (29)

The past drift vector was subtracted because the drift experienced minimal
change between time-steps and so ‖drift − driftpast‖ was small relative to vmax.
This method worked well, but it allowed agents to violate the maximum speed con-
dition when the ~d and driftpast acted in similar directions.

Advanced Drift Cancellation
To ensure the agents obeyed the maximum speed limitation when moving, the prob-
lem of movement became a complicated geometric one. First they had to determine
whether it was possible to reach their ideal position given their knowledge of the
past drift. If it was, they attempted to move directly to their center of mass. If
not, a complicated calculation was performed to make their net movement vector as
straight as possible given their knowledge of the past drift. First, the angle of the
agent’s movement θ was calculated as

θ = arcsin

(
1

vmax

√
‖drift‖2
1 + 1

γ2

)
(30)

where

γ , tan

(
arccos

(
〈~d, driftpast〉
‖driftpast‖‖~d‖

))
(31)

and 〈·,·〉 is the Euclidean inner product. Trigonometry was then used to determine
move after applying moveagent. It was assumed ‖driftpast‖ was never identically
zero. Again, the best estimate was to assume the current drift was identical to the
past drift so the components of move were calculated as

movex = vmax · cos(arctan(~dy, ~dx + θ))

movey = vmax · sin(arctan(~dy, ~dx + θ))

where the arctan function used here is four-quadrant inverse tangent which allows
the calculation of the arctangent in any quadrant. With this, the movement vector
becomes

move = (movex,movey)− driftpast + drift (32)

After implementing this movement, strange jumps in the movement of the agents
appeared when the moveagent vector pointed to the left. It turned out that the er-
ratic behaviour was being caused by the inverse tangent function atan in MATLAB.
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Since this operation is usually defined on [−π2 ,
π
2 ], the agents were not properly cal-

culating the direction of moveagent when it pointed to the left, which is the region
[π2 ,

3π
2 ]. To solve this problem, the function atan2 was used. This function extends

the region on which the inverse tangent is defined to be from [−π, π]. After this fix
the agents efficiently moved to counteract the drift by trying to force move to be
directly along ~d using their knowledge of driftpast.

3.1.5 Sensing Function

The next step in the algorithm was to implement the sensing function f(x). This
involved limiting the radius within which the agents could collect data as described
in Section 2.1.2, and thus the region over which the center of mass was calculated
was reduced. The range was limited by introducing f(x) into the calculations for
the weighting of the triangles used to calculate mass. However, if the vertices of the
cell were past the radius α of f(x) they contributed little to the weighting factor,
and thus the center of mass would be biased to ignore that region.

To fix the mass bias problem, all of the cell’s initial triangulations were sub-
triangulated recursively. This process could be done as many times as necessary to
achieve a desired precision in mass; however, it introduced significant computational
complexity and increased the run-time of the simulation. It was determined after
several trials that two sub-triangulations (for a total of 3 triangulation operations)
was sufficient to alleviate the issue created by f(x) while keeping the computational
time at a minimum. This sub-triangulation also made the mass calculations more
accurate, which meant the center of mass approximations were closer to their actual
value.

3.1.6 Triggering Strategies

The last step in the algorithm was to implement the triggering strategies. This
involved several small modifications to the algorithm. First the number of commu-
nications, distance travelled, and value of Hexp were recorded in every time-step.
This allowed the performance of the strategies to be tracked in order to ensure they
met our stated objectives of lowering the number of communications while sacrific-
ing minimal amounts of information gathered. The exact implementation of these
algorithms, as well as their full descriptions, can be found in Section 4.

The graphical visualization of the model, as output by MATLAB, is shown in
Figure 4 below during the initial deployment stage for the two distributions used.
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(b) Volcano distribution

Figure 4: Example of the random initial deployment of the agents

3.2 Functions

The functions moveVoronoi, voronoiPlot, and subTriangulate were coded specifi-
cally for this project. The functions VoronoiLimit3 and polygeom4 are open-source
functions for MATLAB.

3.2.1 moveVoronoi()

moveVoronoi is the main function for this simulation which is executed to begin the
simulation. Its main purpose is to determine how the agents should move in each
time-step. It runs over 100 time-steps, as this provides more than enough time for all
of the algorithms to reach their final resting positions while keeping the run-time of
the simulation relatively low. The number of time-steps can be adjusted as desired
to see the operation of the simulation over different lengths of time.

To begin with, several constants based on the real world assumptions must be de-
fined. These values can be modified depending on the system that is being modelled,
but all methodologies and procedures that have been conducted in this analysis are
completely independent of them. Therefore, the same processes can be repeated to
find different results based on a change in these constants.

Set Model Parameters
Firstly, n = 50 agents are randomly deployed over the space S = [0, 1]× [0, 1]. Their
deployment is restricted to the space [0.375, 0.625]× [0.375, 0.625], which represents
the middle quarter of the space. This restriction is in place to mimic a real world

3VoronoiLimit can be downloaded at
http://www.mathworks.com/matlabcentral/fileexchange/34428-voronoilimit

4polygeom can be downloaded at
http://www.mathworks.com/matlabcentral/fileexchange/319-polygeom-m
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scenario where all agents would be dropped off together in a central area, and then
need to move to their desired positions. Next, the maximum speed of the agents
is defined to be vmax = 0.025; this means that agents can move at most 2.5% of
the length of [0, 1] in one time-step. Then the α value for our sensing function is
defined to be α = 0.05. Lastly, constants are defined to restrict the values of drift.
The drift vector is randomly initialized to be any angle between 0◦ and 360◦, and
its magnitude is restricted to be greater than 0 but less than or equal to 0.005, 20%
of the agents’ max speed, at all times. Between time-steps, the drift’s magnitude
can only change by 0.0005, or 10% of the maximum drift. The change in angle is
restricted to be no more than 1◦. It is assumed that the agents can sense the drift
after it has influenced them, and so they have access to the drift vector from the
previous time-step.

Deploy Agents and Compute Initial Values
The first step of the algorithm is to randomly deploy the agents as described above,
and randomly initialize the drift. An example of the random deployment of the
agents for both distributions can be seen in Figure 4, with agent positions in green
and Voronoi borders in magenta. Each time-step is treated independently, and so
a loop is run until a desired number of iterations have been processed. First, the
contour plot of the density function is drawn. The S-limited Voronoi partitions are
then found, which are the Voronoi partitions intersected with the boundary of S,
using voronoiPlot. This function returns the coordinates of every agent’s Voronoi
cell, their center of mass, and the Hexp in the current time-step. Next, the drift
force that will occur in this time-step is determined.

Determine Agent Movement
Next, a loop runs through all agents to determine their movement. First, the dis-
placement ~d is calculated from the agent to its center of mass, and then the agent
calculates how it should move to counteract the drift.

If ‖~d−driftpast‖ ≤ vmax, then the agent can move to its desired position without
violating the maximum speed condition. The idea is that after the drift is applied,
the net movement move of the agent becomes

move = ~d− driftpast + drift

If ‖~d− driftpast‖ > vmax and the vectors are not collinear (to avoid division by
zero), then we employ a much more complicated algorithm which is described in
detail in Section 3.1.4.

Finally if driftpast and ~d are collinear, then the agent simply wishes to move

along ~d and thus the knowledge of driftpast is irrelevant. In this case, move is
calculated as

move = vmax ·
~d

‖~d‖
+ drift
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Final Computations and Metrics
The next step is to calculate the number of Voronoi neighbours of the agent. If
an agent chooses to communicate in the current time-step, then the count for the
number of communications is increased by its number of neighbours. After each
agent has been moved to its next location, driftpast is updated by storing drift.
There are several other calculations done in this loop, but they are only performed
for specific triggering strategies and not in the general case. After the above loop
has concluded, the value of Hexp in each time-step is examined in reverse order until
they drop below 98% of the final value. The time-step after this occurs (i.e. the
first time it is within 2% of the final value of Hexp) is defined as the stopping time.

3.2.2 voronoiPlot()

voronoiPlot calculates and plots the Voronoi partitions and returns the calculated
values for use in moveVoronoi.

It first finds and plots the Voronoi partitions, as well as the positions of the
agents, by calling VoronoiLimit. The called function returns the Voronoi cells for
each agent. Then a loop is run through each cell to find the center of mass. The sub-
triangulation process performed when it calls subTriangulate is described in detail
in Sections 3.1.3 and 3.1.5. Lastly, the overall Hexp is found by summing the values
of Hexp over the individual triangles.

3.2.3 subTriangulate()

subTriangulate recursively triangulates a given triangle until a desired number of
iterations have been performed.

Recursively Triangulate the Area
First, the function finds the centroid of the given triangle using polygeom. It then
creates three new triangles from the centroid and adjacent vertices of the original
triangle in the same way that it is done in voronoiPlot. Then, if it has not met
the desired number of sub-triangulations, it calls itself again on each of the three
new sub-triangles. It then loops through each of the triangles that it has made and
calculates their centers of mass using (26) and (27).

Numerically Integrate to Calculate Hexp
The last step is to calculate the Hexp of the overall triangle that was given to the
function. Due to the complexity of calculating a number of integrals, a weighted
sum approximation is used instead. Similar to finding the weighted centroid, the
information density is evaluated at the vertices and then weighted by the sensing
function. These values are then averaged for all three vertices to get a weighting
factor for the overall triangle. This weighting factor is then multiplied by the area
of the triangle, found using polygeom, to approximate the integral over the triangle.
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This information is passed back to voronoiPlot to be summed along with all other
triangles to find the overall value of Hexp in the current iteration.

3.2.4 VoronoiLimit()

VoronoiLimit is an open-source function that was modified slightly for use in this
simulation. It finds the Voronoi partition for a given set of agent positions, and
then intersects the partitions with the boundary of the space S. The end result
is that the Voronoi partitions are limited to the space S. After calculating these
values, it then plots the boundaries of the Voronoi cells as well as the positions of
the individual agents.

3.2.5 polygeom()

This open-source function calculates the area and centroid of a given polygon. In
this context, it was used to find the centroid and area of triangles at multiple points
in the triangulation process.

4 Design of Triggering Strategies

With the MATLAB simulation described previously, agents communicate at every
time-step. We call this triggering strategy the full communication base case. Now,
using metrics to analyze the base case, triggering strategies can be designed to make
better use of the agents’ communication abilities. In what follows, the strategies are
evaluated using the Islands distribution, given by equation (6) and shown in Figure
3, as its asymmetric nature would lead to more robust strategies relative to the
symmetric Volcano distribution, given by equation (5) and Figure 2.

4.1 Metrics of Comparison

Metrics of comparison must be defined to determine the benefits and drawbacks of
the control policies. In this work, three metrics of comparison were considered: the
value of Hexp collected in the final step, the total number of communications over
a fixed number of time-steps, and the settling time of Hexp. The methods used to
calculate these values can be found in Section 3.2.

Cumulative distance travelled was considered as an additional metric, but was
not used in determining the optimal policy. This is an important consideration
as both communication and motor use require the consumption of power. Thus, a
control policy which reduces total communications but requires additional movement
may incur a higher net consumption of power and so such policies are not considered.
In this work, all control policies that result in a cumulative distance travelled that
is less than the base case are considered equal by this metric.
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4.2 Control Strategies

4.2.1 Full Communication

The first strategy considered is the full communication case, which is analogous
to applying no communication control to the system. In this strategy, each agent
communicates their current position to all of their neighbours at every time-step.

This case is of particular interest since, given the constraints imposed by the sim-
ulation, the largest expected Hexp is achieved using this strategy. This is a logical
conclusion as each control policy imposes restrictions on the frequency of communi-
cation, and hence reduces the accuracy and amount of available information. This
fact makes the full communication strategy a convenient base case for comparison.

4.2.2 Constant Triggering Radius

By imposing restrictions on the agents’ ability to communicate, uncertainty in the
positions of their neighbours is introduced. Without the precise location of its
neighbours, an agent cannot accurately calculate its Voronoi partition, requiring the
use of a different partitioning scheme. Nowzari and Cortés proposed a solution [7] to
this issue using the notion of guaranteed and dual-guaranteed Voronoi partitions, as
defined by Sember and Evans [2]. Unfortunately, determining these partitions and
thus the optimal position for an agent to move towards is computationally expensive
and diminishes the savings from communication. An alternative approach was taken
by Heemels, Johansson, and Tabuada [4], which was the inspiration behind the
creation of the constant triggering radius policy described below.

Definition 4.1. (Constant Triggering Radius Communication
Condition): Agent i communicates its position if

‖pti − p̃i‖ ≥ r (33)

Where pti is the position of agent i at time t, p̃i is the last communicated position of
agent i, and r is the triggering radius.

In this strategy, each agent is responsible for communicating their position to
their neighbours instead of measuring their neighbours’ positions. The agents use
an event triggering policy and communicate when the inequality in (33) is satisfied.

One can interpret this bound as a promise each agent makes to their neighbours;
specifically, that they will remain within a radius r of their last communicated
position. Furthermore, since r is chosen to be small, the Voronoi partitions of each
agent can be well approximated using the last communicated positions of an agent
and its neighbours, instead of their current positions. An implementation of this
strategy can be found in Section 3.2.1.
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One can easily see that the performance of this strategy is heavily dependant on
the choice of r. The following plots were created by performing 251 trials, varying
r from 0 to 0.1.
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Figure 5: 2D plots showing the selected constant trigger radius of 0.0025.

The above set of plots can be interpreted as a single 3-dimensional plot of trigger
radius, final Hexp, and total number of communications. As mentioned previously,
all values were found using the Islands distribution. Examining Figure 5c, a value
corresponding to an Hexp of 0.81 and total number of communications of 10 270 was
selected, as marked by the red lines. Due to the lack of an explicit cost function,
this point was chosen to balance the trade-off between communications and Hexp,
while prioritizing a high value of Hexp. Increasing the number of communications
any further would result in significant diminishing returns in Hexp gain. Examining
figures 5a and 5b, the same point is indicated by the red lines and corresponds
to an r of 0.0025. This plot also highlights the communication savings associated
with using a larger trigger radius; again it can be seen that using an r of 0.0025
offers large savings over a radius of 0, which is the full communication case. It is
important to note that if a different trade-off between Hexp and communications
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is desired, a different point on Figure 5c can be chosen which would result in a
different choice of r. For example, if an explicit threshold on Hexp was set, one
could find a value of r that preserves this threshold while still offering a reduction
in communications. Lastly, it is important to note that the optimal value of r is
influenced by the agent’s ability to estimate the drift, or equivalently the amount an
agent tends to move when attempting to remain stationary. The vast majority of
the communication savings occur after the settling time, which is when the agents
are moving almost exclusively to counteract the drift.
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Figure 6: Comparison between full communication and constant trigger radius with
r = 0.0025 using the Islands distribution

Figure 6a demonstrates that both strategies have nearly identical information
gathering capabilities, with the full communication case converging to a slightly
higher Hexp value. Conversely, as Figure 6b displays, the necessary communications
are drastically different. While the agents are moving to their optimal positions the
constant trigger strategy communicates nearly as much as the full communication
case. However, after approaching the near-optimal positioning, there are signifi-
cant communications savings from using the constant trigger strategy. This occurs
because the agents are no longer moving over large distances, and thus often stay
within r of their last communicated position. The constant triggering radius does
not prevent all communication in the limit since the randomness in the drift can
cause agents to exceed a distance r from their last communicated position and thus
communicate.

4.2.3 Non-Constant Triggering Radius

The constant triggering radius strategy provided excellent results; however, there
is no guarantee that it is an optimal strategy. As such, further effort was made
in an attempt to obtain even better results. As Figure 6b displays, the constant
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triggering radius strategy has close to the same number of communications as the full
communication case at the beginning of the simulation. Thus, triggering strategies
which communicated less during the initial time-steps were considered. Initially the
radius was made as a function of time but since the time to convergence is dependant
on the distribution, this idea was determined to be impractical in general.

For the second triggering strategy, the target period for reducing the number
of communications was from the beginning until approximately the 40th time-step.
The reason that the constant triggering strategy constantly communicated in this
period was because the agents move a large amount and thus almost always exceed a
distance r from their last communicated position. This led to the idea of a triggering
radius which was proportional to the distance the agent had moved. Unfortunately
this resulted in erratic communication and a poor amount of information collected.
The following definitions are used to describe the non-constant triggering strategy.

Definition 4.2. (Neighbouring Set): N t
i is the set of the last communicated

positions p̃j of the neighbours of agent i at time t, given by

N t
i = {p̃j : j is a neighbour of i} (34)

Definition 4.3. (Average Distance to Neighbours): βti is the average distance
between agent i and its neighbours, which is computed as

βti =
1

|N t
i |
∑
n∈Nt

i

‖pti − n‖ (35)

The non-constant triggering strategy uses the average distance to an agent’s
neighbours. During a period where an agent is moving rapidly, the average distance
to its neighbours also experiences rapid change. This allows for the use of a larger
triggering radius without being completely dependent on the movement of the agent.
In addition, the agents are not aware of the amount of information they are collecting
in comparison to the overall information available; however, agents will cluster more
around the areas of high information and thus have a smaller average distance
to their neighbours. By multiplying the average distance by the triggering radius
(36), the agents can use a smaller radius if they are positioned in an area of high
information, and use a larger radius if they are in an area of low information. This
results in a higher Hexp measurement in the areas of high information, and fewer
communications in areas of low information. Each agent is allowed to calculate
their own triggering radius based on the available local information as an agent is
not required to know the triggering radii of their neighbours. Simply put, each agent
ensures they remain close enough to their last communicated position so the Voronoi
partitions remain accurate. When an agent determines its Voronoi partition is no
longer accurate (by leaving the ball defined by their calculated triggering radius),
the agent transmits its locations to its neighbours.
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Definition 4.4. (Triggering Radius Function): The triggering radius can be
computed as a function of p̃i and N t

i as follows:

r(p̃i, N
t
i ) =

{
rclose · βti , if |βti − βt−1i | < δ

rfar · βti , otherwise
(36)

Where rclose, rfar, and δ are design parameters.

Definition 4.5. (Non-Constant Triggering Radius Communication Con-
dition): Agent i communicates its position if

‖pti − p̃i‖ ≥ r(p̃i, N t
i ) (37)

The design parameters rclose, rfar, and δ in Definition 4.4 were selected in a
similar fashion to the radius r discussed above in Section 4.2.2. In this case since
there are multiple parameters, two parameters were fixed and the third varied. By
examining the output plots, a value which was considered optimal was chosen and
the parameter fixed to this value. This process was applied iteratively, until all
variables were varied and optimal points selected. This process resulted in the
values rclose = 0.021, rfar = 0.16, and δ = 0.0025. Thus the triggering radius
function becomes

r(p̃i, N
t
i ) =

{
0.021 · βti , if |βti − βt−1i | < 0.0025

0.16 · βti , otherwise
(38)

Optimizing the design parameters resulted in rclose < rfar. This was as expected,
since rfar is used when the agents are moving rapidly, and thus they can use a larger
triggering radius to save some communications as they move. During movement
phases the precise measurement of Hexp is not important, so the agents do not have
to be positioned optimally until they are close to their final resting position.

Similar to the constant triggering radius strategy, the above approach was im-
plemented in the moveVoronoi function by first calculating βti followed by r(p̃i, N

t
i ).
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5 Results

5.1 Overall Trends
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Figure 7: Average trends for the Islands distribution over 50 trials

Performance Metric (% Difference from Base)
Hexp Total Communications Settling Time

Islands
Full 0 0 0

Constant -0.72 -62.10 -10.75
Non-Constant -0.82 -66.70 +13.26

Volcano
Full 0 0 0

Constant -0.63 -68.30 -8.68
Non-Constant -0.84 -70.74 +24.37

Table 1: Comparison of all strategies for both information densities
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Overall, both triggering strategies offer minimal decreases in the amount of in-
formation gathered for significant savings in the number of communications. Fur-
thermore, both strategies decrease the total distance travelled by our agents, and
thus they meet all of our design criteria.

Their performance is first studied when subjected to the Islands distribution (6).
Examining the average trend in Hexp seen in Figure 7a, it can be seen that the full
communication and constant triggering strategies follow a very similar pattern. In
fact, as seen in Table 1, on average they converge to values within 0.72% of one
another. The non-constant triggering strategy lags behind both of the others in
movement, but converges to an average Hexp that is only 0.82% lower than in the
full communication case.

When examining the total distance travelled in Figure 7c, once again the full
communication and constant trigger strategy are very similar in overall trend. The
constant strategy moves slightly less and takes an average of 10.75% less time to
converge to its optimal position, as seen in Table 1. The average trend for the
non-constant trigger strategy is to lag behind both of the others once again, and
to converge to a value that is slightly above the distance travelled by the constant
strategy. The distance travelled does not go to zero when the agents have reached
an optimal position due to the effect of drift that agents must always fight. Finally,
the trend in the full communication case is to travel more when the agents have
reached their optimal position relative to the other two strategies. The lack of this
behaviour would lead to drastic savings in movement as the number of time-steps
increases.

The most important result of this project can be seen by viewing the communi-
cations in figures 7b and 7d. As is expected, the full communication case increases
its communications in a linear fashion with time. This trend is not perfectly linear
as the number of neighbours that each agent has can change in time since more
agents will have Voronoi borders on the boundary of S. When examining the other
two triggering strategies, Figure 7d shows that both strategies achieve their biggest
savings after the agents have moved into their near-optimal positions. As discussed
in Section 4, the constant trigger strategy communicates at almost every time-step
as the agents quickly disperse themselves across the space. However, the agents
quickly settle into a near-optimal position and thus communicate significantly less
as time goes on. The non-constant strategy achieves its savings relative to the
constant by communicating much less as the agents disperse themselves across the
space. However, this lack of precision in their Voronoi partitions as they move means
that they take longer to settle into their near-optimal positions after dispersing and
thus communicate more for a longer period of time. The net effect is a reduction in
the number of communications over both of the other strategies, as seen in Table 1.
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Figure 8: Average trends for the Volcano distribution over 50 trials

In Figure 8, it can be seen that many of the trends observed for the Islands
distribution also appear for the Volcano distribution. Most notably, there is a drastic
decrease in the number of communications for a minimal sacrifice in Hexp, which
is made explicit in Table 1. The largest difference between the two distributions
is in the performance of the two triggering strategies relative to one another. In
Figure 8d we see the same trend in communications as in Figure 7d, however the
final difference between the two triggering strategies is much less.

Another difference between the two distributions is the overall trend in Hexp,
as seen in Figure 8a. At first all the strategies perform similarly, since agents are
deployed in the middle of the distribution where the information density is highest.
However, once they start to move past the ring of highest information, their rate
of increase in Hexp drops as they transition through the areas of lower information.
After this phase, the non-constant strategy once again lags behind as it takes longer
to adapt its positioning while the agents are moving quickly and thus have a larger
triggering radius.
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Voronoi Cells and Agent Positions
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Figure 9: Example of the agents’ final positions and Voronoi cells

An example of the final positions of the agents after the simulation has concluded
can be seen in Figure 9. As before, the agents’ positions are green while the Voronoi
borders are magenta. First, it can be seen that in areas of high information the
Voronoi cells resemble hexagons. This is to be expected, as this is the most efficient
shape to equally distribute the information in the uniform case. Furthermore, it is
evident that in areas of high information the agents are closely packed; this is because
their ability to gather information diminishes according to the sensing function. In
areas of lower information, cells become increasingly large since there is very little
information to be gathered.

The plots presented in Figure 9 represent the final resting positions when using
the non-constant triggering strategy. It was noted throughout the project that the
different strategies did not necessarily lead to different coverage patterns, and that
the initial position of the agents had a much larger effect on their final positions.
Once again this is to be expected, since Lloyd’s algorithm only guarantees conver-
gence to a locally optimal positioning. The lack of difference between the algorithms
also makes sense since the difference in final values of Hexp are so low, as seen in
Table 1. The visual output when running the full communication case and the two
triggering strategies looked identical to one another.
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5.2 Variance in Results
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Figure 10: Metric values and means for the Islands distribution over 50 trials

As Figure 10a displays, the constant and non-constant triggering strategies pro-
duce very similar Hexp values, with the constant strategy performing slightly better
than non-constant on average. As expected, the full communication case has the
largest mean Hexp by a reasonable margin. It can also be seen that the full com-
munication, constant triggering, and non-constant triggering strategies all vary by
similar amounts. As a result, there are scarce scenarios where the constant and
non-constant strategies can produce the greater Hexp value.

As Figure 10b makes evident, the number of communications used by the full
communication strategy greatly exceeds that of the other two strategies. It is also
notable that the variance in the number of communications relative to the mean
is low in comparison to the other metrics. Even the constant and non-constant
strategies have a small range in the number of communications where they have the
potential to cross. Given these observations, it is likely the non-constant strategy
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will use less communications than the constant strategy, and it is safe to assume
that the full communication strategy will use the most communications.

In Figure 10c above, it is once again evident that the mean and variance values
of the constant and non-constant triggering strategies are very similar. This is
comparable to the trend in Hexp seen in Figure 10a, but with the constant strategy
slightly out-performing the non-constant case. In general, it is likely the constant
and non-constant strategies will require less movement than the full communication
strategy, once again demonstrating the potential to save power through the reduction
in communication.

As seen in Figure 10d, time-steps to convergence has a large variance relative
to the mean, making it the most volatile of the four comparison metrics. Over the
50 simulations, almost all strategies had at least one simulation that crossed over
the mean of the other strategies. This is particularly evident with the constant
strategy, which has the lowest mean but the greatest single time to convergence
over all strategies and simulations.

6 Discussion

6.1 Discussion of Metrics

There were two primary performance metrics defined for the scope of this project:
the final value of Hexp and the number of communications. A third performance
metric that was considered was the settling time, but this was not a main focus of
the project.

Final value of Hexp
When looking at figures 7a and 8a, the full communication strategy has the largest
final Hexp value by a small margin. This is because the agents continuously move
towards the exact center of mass and communicate continuously. For the triggering
strategies each agent has an open ball defined by their triggering radius, henceforth
referred to as the trigger ball, which encompasses the center of mass so that their
optimal position is not broadcast. Instead, the position communicated by the agent
could be a distance r away from the center of mass which in turn means the final
Voronoi partitions are suboptimal. This results in a slightly lower Hexp value. As
the triggering radii used once agents reach equilibrium approach 0, the final value
of Hexp approaches the limit given by the full communication case.

Number of communications
Figures 7b, 7d, 8b, and 8d give insight to the effect on the number of communications
by the triggering strategies. The total number of communications for the full com-
munication case increases in a linear fashion as expected. The triggering strategies
have a decrease in communication in time-steps 0 to 5 because the agents deployed
in the middle of the cluster remain stationary. The agents that were distributed
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on the outside perimeter have to escape their trigger ball first and communicate
their new position before the inside agents know they should begin moving larger
distances. The non-constant trigger strategy has the decrease in communication in
time-steps 10 to 20 whereas the constant trigger strategy is essentially always com-
municating because r < rfar. In this time period, the agents are moving rapidly
which means in the constant strategy they are consistently leaving their trigger ball
whereas the non-constant was designed specifically to account for this.

Settling time
The more noticeable trend of figures 7a and 8a is the lower value of the non-constant
Hexp curve relative to the constant and full communication Hexp curve around the
20th time-step. This difference occurs because of the large radius of the non-constant
trigger ball rfar. Due to the radius being large, the information that the agents
receives is not as updated as the other cases and and so its Hexp value does not
increase as quickly in this stage. As a result, the non-constant strategy takes longer
to reach its equilibrium point which results in a larger settling time.

6.2 Strategy Comparison

Both the constant and non-constant strategies provide significant communication
savings in comparison to the full communication strategy, provided the user has
some tolerance in the amount of information collected. Due to the lack of an explicit
cost function, determining the best strategy is not entirely clear; however, given our
results the constant strategy has the best performance. Using the results from the
Islands distribution seen in Table 1, the constant strategy collected 12.2% moreHexp
relative to the loss from the non-constant strategy. In contrast, the non-constant
strategy saved 6.9% more communications relative to the savings obtained by using
the constant strategy, but took 21.2% longer to converge. The constant strategy
had even better performance gains compared to the non-constant strategy over the
volcano distribution. In this case, constant collected 25% more Hexp relatively and
converged 26.6% faster while only using 3.4% more communications. Thus, the
constant strategy also tends to perform better when not optimized for the given
information distribution.

Despite the constant strategy out-performing the non-constant one, it is by no
means considered to be optimal. The strong performance of the non-constant strat-
egy demonstrated the potential of such strategies to outperform the constant case,
further reducing the impact of the trade-off between Hexp and the number of com-
munications.
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6.3 Application of Results

As discussed earlier when comparing the constant and non-constant triggering strate-
gies, the preferred strategy will be determined based on how valuable communica-
tions are relative to the information being gathered for the selected application.

In this section, the results are applied to the oceanographic data collection net-
work which was discussed previously as a motivation for the project [5]. After
researching the hardware used in these aquatic agents, it was determined the com-
munication system was an acoustic system designed specifically for underwater use.
Specifically the antenna was omnidirectional, which allows the agents to communi-
cate with maximum gain in the plane horizontal to the agent. The specifications
for this transmitter were researched [3] and the total power usage dedicated to com-
munications was determined for a single agent who was part of a 50 agent network.
One assumption made from observations of the model was that the agents would
be initiating less short range communications and more long range transmissions as
they spent more time spread out than clustered at the beginning of the simulation.
This assumption was relevant because the power requirements to make a communi-
cation were based on the distance of the link. Table 2 contains the power usage for
communications based on the triggering strategy, which were found using the costs
detailed in [3] and the results shown in Table 1.

Strategy Total Power Usage for Communications

Full Communication 19,697 W
Constant Triggering 7,465 W

Non-Constant Triggering 6,559 W

Table 2: Comparison of communication power usage between strategies

Another consideration that should be noted when evaluating this data is that
this is the power required for the first 100 time-steps, which was enough time to allow
the network to settle near equilibrium. In reality once the network has settled there
will still be some communication, most notably in the case of full communication,
but it was ignored for this analysis.

Looking at the presented results, trying to monetize these values from a cost of
electricity perspective is fruitless as the cost of a KWh is on the order of $0.15 and
the power savings here are not on that order of magnitude. The benefits derived from
the power savings are less monetary and more based on the flexibility they provide
the agents to carry smaller power supplies, and focus more power on movement,
navigation, and data collection.

Weighing the cost of the lost network information against the gain of reducing
communication power in the oceanographic application [5], each agent was collecting
on average 200 data points per sample, so a cost of 0.72% or 0.82% of network
coverage for the constant and non-constant strategies respectively would only result
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in a loss of one or two data points per sample. This is likely insignificant, so in the
oceanographic data application, adopting the constant or non-constant triggering
strategy would be appropriate as there are sizeable savings in communication and
minimal loss in information coverage.

While some consideration was given to how these strategies affected the dis-
tance travelled by the agents in our research, it is likely that these savings might
have proven more quantifiable in terms of monetary benefits in comparison to the
communication reductions. While the results were not fully explored, it was shown
that both of the developed triggering strategies resulted in a reduction in distance
travelled by the agents. Even without quantifying these in terms of actual savings,
these findings further reinforce the policy of implementing one of the developed
strategies in the oceanographic application.

6.4 Further Applications

While potentially beyond the scope of the actual strategies developed in our research,
there are numerous other aquatic network applications where extensions of this
research could be applied. The application of this project to these areas could have
a wide range of environmental and societal impacts.

Consider an application where small, lightweight autonomous agents are de-
ployed immediately after an oil spill. They are tasked with tracking the borders
of the spill so clean-up units can know the coordinates as they develop over time.
If all vessels with the potential to spill harmful contents were required to carry
these agents for emergency deployment, having minimalistic hardware would be im-
portant to reduce costs. With a lightweight agent design, saving on communication
and movement costs would be important, and obviously tracking the spill accurately
would also be critical.

The environmental benefits of this application could be substantial if the network
of agents were able to provide valuable information to clean-up efforts which enabled
the impact of the spill to be minimized in comparison to the situation without the
assistance of the autonomous network.

Depending on where a specific spill took place, it could impact human activity
if the contents reached the shoreline of beaches, private residences, or commercial
locations. The described application has the potential to reduce all of these risks,
making further research a worthwhile endeavour.
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7 Conclusion

In this project, two triggering strategies were developed which restricted a given
agent’s communication while it remained within an established trigger ball. The
radius of the trigger ball was either constant or dependent on the average distance
between the given agent and its Voronoi neighbours. Both of the implemented
strategies significantly decreased the frequency of communication within the network
with minimal losses in information gathered by the network. It is not clear that
either strategy is superior, but by using the methods described in this project it is
possible to determine which strategy would be better suited for a specific application.

Having achieved a favourable trade-off between communication reduction and
information loss in each of the strategies, both were considered acceptable for im-
plementation in the aquatic network application which acted as the inspiration for
the simulation model.

7.1 Future Work

If there was more time available to continue this project, a variety of different
paths could be taken. With the work already done, there is future theoretical work,
engineering design work, and simulation work that could be pursued.

For theoretical work, it would be a significant achievement to derive a rigorous
and tight bound on performance. Cortés and Nowzari [7] were able to prove a
bound on convergence but were unable to provide a bound on the performance of
their algorithm.

For engineering design work, it would be interesting to implement the algorithms
on physical hardware. This would bring insight to constraints that were not consid-
ered in the model as well as provide experimental values to power consumed by the
motor and communication devices.

Finally, a new algorithm or simulation direction could be to focus on minimizing
the movement of the agents. Considering that the motor would consume a significant
amount of energy, minimizing the distance the agents move would have a large
impact on increasing the battery life. A cost function which is a function of energy
consumed by the motor and communication could also be designed. Furthermore,
the model could be extended to be in three dimension or equivalently S ∈ R3.
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Appendix

Please see the attached CD for all of the MATLAB codes that were used in this
project.
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